Abstract

We report on the comprehensive experimental characterization of optical crosstalk between waveguides caused by scattering. Our results reveal that a strong power exchange between close-placed waveguides due to sidewall roughness exists also for high-quality, low-loss waveguides. We derive a power-law dependence of the coupling on the distance between the waveguides, confirmed by an ad hoc developed electromagnetic model. Further, we demonstrate higher order mode excitation caused by scattered light and the appearance of decorrelation between the guided modes propagating in waveguides coupled via radiative mechanism, providing a full description of this phenomenon.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
    [CrossRef]
  2. W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, Opt. Lett. 32, 2801 (2007).
    [CrossRef]
  3. J. Powelson, W. Feng, S. Lin, R. J. Feuerstein, and D. Tomic, J. Lightwave Technol. 16, 2020 (1998).
    [CrossRef]
  4. G. Veronis and S. Fan, Opt. Express 16, 2129 (2008).
    [CrossRef]
  5. F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, Phys. Rev. Lett. 104, 033902 (2010).
    [CrossRef]
  6. D. Marcuse, Bell Syst. Tech. J. 50, 1817 (1971).
  7. D. Melati, F. Morichetti, A. Canciamilla, D. Roncelli, F. Soares, A. Bakker, and A. Melloni, J. Lightwave Technol. 30, 3610 (2012).
    [CrossRef]
  8. A. S. Sudbo, J. Eur. Opt. Soc. A 2, 211 (1993).
  9. T. Barwicz and H. Haus, J. Lightwave Technol. 23, 2719 (2005).
    [CrossRef]
  10. K. Michalski, IEE Proc. H 132, 312 (1985).
    [CrossRef]
  11. W. Zhao, J. W. Bae, I. Adesida, and J. H. Jang, J. Vac. Sci. Technol. B 23, 2041 (2005).
    [CrossRef]
  12. D. Marcuse, Bell Syst. Tech. J. 48, 3233 (1969).
  13. C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, IEEE J. Sel. Top. Quantum Electron. 12, 1306 (2006).
    [CrossRef]

2013

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
[CrossRef]

2012

2010

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, Phys. Rev. Lett. 104, 033902 (2010).
[CrossRef]

2008

2007

2006

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, IEEE J. Sel. Top. Quantum Electron. 12, 1306 (2006).
[CrossRef]

2005

W. Zhao, J. W. Bae, I. Adesida, and J. H. Jang, J. Vac. Sci. Technol. B 23, 2041 (2005).
[CrossRef]

T. Barwicz and H. Haus, J. Lightwave Technol. 23, 2719 (2005).
[CrossRef]

1998

1993

A. S. Sudbo, J. Eur. Opt. Soc. A 2, 211 (1993).

1985

K. Michalski, IEE Proc. H 132, 312 (1985).
[CrossRef]

1971

D. Marcuse, Bell Syst. Tech. J. 50, 1817 (1971).

1969

D. Marcuse, Bell Syst. Tech. J. 48, 3233 (1969).

Adesida, I.

W. Zhao, J. W. Bae, I. Adesida, and J. H. Jang, J. Vac. Sci. Technol. B 23, 2041 (2005).
[CrossRef]

Bae, J. W.

W. Zhao, J. W. Bae, I. Adesida, and J. H. Jang, J. Vac. Sci. Technol. B 23, 2041 (2005).
[CrossRef]

Baets, R.

Bakker, A.

Barwicz, T.

Bogaerts, W.

Canciamilla, A.

D. Melati, F. Morichetti, A. Canciamilla, D. Roncelli, F. Soares, A. Bakker, and A. Melloni, J. Lightwave Technol. 30, 3610 (2012).
[CrossRef]

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, Phys. Rev. Lett. 104, 033902 (2010).
[CrossRef]

Dumon, P.

Fan, S.

Feng, W.

Ferrari, C.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, Phys. Rev. Lett. 104, 033902 (2010).
[CrossRef]

Feuerstein, R. J.

Freude, W.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, IEEE J. Sel. Top. Quantum Electron. 12, 1306 (2006).
[CrossRef]

Fujii, M.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, IEEE J. Sel. Top. Quantum Electron. 12, 1306 (2006).
[CrossRef]

Haus, H.

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
[CrossRef]

Jang, J. H.

W. Zhao, J. W. Bae, I. Adesida, and J. H. Jang, J. Vac. Sci. Technol. B 23, 2041 (2005).
[CrossRef]

Koos, C.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, IEEE J. Sel. Top. Quantum Electron. 12, 1306 (2006).
[CrossRef]

Leuthold, J.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, IEEE J. Sel. Top. Quantum Electron. 12, 1306 (2006).
[CrossRef]

Lin, S.

Marcuse, D.

D. Marcuse, Bell Syst. Tech. J. 50, 1817 (1971).

D. Marcuse, Bell Syst. Tech. J. 48, 3233 (1969).

Martinelli, M.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, Phys. Rev. Lett. 104, 033902 (2010).
[CrossRef]

Melati, D.

Melloni, A.

D. Melati, F. Morichetti, A. Canciamilla, D. Roncelli, F. Soares, A. Bakker, and A. Melloni, J. Lightwave Technol. 30, 3610 (2012).
[CrossRef]

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, Phys. Rev. Lett. 104, 033902 (2010).
[CrossRef]

Michalski, K.

K. Michalski, IEE Proc. H 132, 312 (1985).
[CrossRef]

Morichetti, F.

D. Melati, F. Morichetti, A. Canciamilla, D. Roncelli, F. Soares, A. Bakker, and A. Melloni, J. Lightwave Technol. 30, 3610 (2012).
[CrossRef]

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, Phys. Rev. Lett. 104, 033902 (2010).
[CrossRef]

Pfrang, A.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, IEEE J. Sel. Top. Quantum Electron. 12, 1306 (2006).
[CrossRef]

Poulton, C. G.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, IEEE J. Sel. Top. Quantum Electron. 12, 1306 (2006).
[CrossRef]

Powelson, J.

Roncelli, D.

Schimmel, T.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, IEEE J. Sel. Top. Quantum Electron. 12, 1306 (2006).
[CrossRef]

Soares, F.

Sudbo, A. S.

A. S. Sudbo, J. Eur. Opt. Soc. A 2, 211 (1993).

Sun, J.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
[CrossRef]

Thourhout, D. V.

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
[CrossRef]

Tomic, D.

Torregiani, M.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, Phys. Rev. Lett. 104, 033902 (2010).
[CrossRef]

Veronis, G.

Watts, M. R.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
[CrossRef]

Yaacobi, A.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
[CrossRef]

Zhao, W.

W. Zhao, J. W. Bae, I. Adesida, and J. H. Jang, J. Vac. Sci. Technol. B 23, 2041 (2005).
[CrossRef]

Bell Syst. Tech. J.

D. Marcuse, Bell Syst. Tech. J. 50, 1817 (1971).

D. Marcuse, Bell Syst. Tech. J. 48, 3233 (1969).

IEE Proc. H

K. Michalski, IEE Proc. H 132, 312 (1985).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, IEEE J. Sel. Top. Quantum Electron. 12, 1306 (2006).
[CrossRef]

J. Eur. Opt. Soc. A

A. S. Sudbo, J. Eur. Opt. Soc. A 2, 211 (1993).

J. Lightwave Technol.

J. Vac. Sci. Technol. B

W. Zhao, J. W. Bae, I. Adesida, and J. H. Jang, J. Vac. Sci. Technol. B 23, 2041 (2005).
[CrossRef]

Nature

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, Phys. Rev. Lett. 104, 033902 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Test structure for the measurement of optical radiative crosstalk with the cross-section of the InP rib-shaped waveguides in the lower right corner.

Fig. 2.
Fig. 2.

Power coupling as function of the distance g between neighboring straight waveguides. The power at the output of the direct (Pout, blue crosses) and adjacent (Pxt, red dots) waveguides was experimentally measured and compared to simulated evanescent coupling contribution for perfectly smooth sidewalls (blue and black solid lines). A power-law dependence of the power crosstalk on the waveguide distance can be observed for a gap wider than 3 μm—behavior also confirmed by the developed model (red-dashed line).

Fig. 3.
Fig. 3.

Roughness on the two facing sidewalls is modeled by an equivalent array of dipole sources. Roughness on the other sidewalls is neglected.

Fig. 4.
Fig. 4.

(a) Normalized power spectral density Pxt/(Pout+Pxt) measured for different values of the gap g. (b) Near-field measurements at the output ports B and C of the device for three wavelengths. For g=5μm, the effect of a multimode propagation appears.

Fig. 5.
Fig. 5.

(a) Schematic of the test structure for phase analysis. The phase ψd and ψa of the fields reflected at the end of both waveguides was measured at port C. (b) Measured spectral behavior of the phase difference (ψ˜dψ˜a) compensates for propagation terms. Phase fluctuations increase for larger gaps confirmed in (c) by the increase of the standard deviation (red dots). Phase randomness in the coupled field causes fields decorrelation (black squares).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

J=jω(ϵfϵb)Ei
ρ=i=1N(eaea)(eded)i=1N(eaea)2i=1N(eded)2,

Metrics