Abstract

This Letter presents an all-optical high-temperature flow sensor based on hot-wire anemometry. High-attenuation fibers (HAFs) were used as the heating elements. High-temperature-stable regenerated fiber Bragg gratings were inscribed in HAFs and in standard telecom fibers as temperature sensors. Using in-fiber light as both the heating power source and the interrogation light source, regenerative fiber Bragg grating sensors were used to gauge the heat transfer from an optically powered heating element induced by the gas flow. Reliable gas flow measurements were demonstrated between 0.066m/s and 0.66m/s from the room temperature to 800°C. This Letter presents a compact, low-cost, and multiflexible approach to measure gas flow for high-temperature harsh environments.

© 2014 Optical Society of America

Full Article  |  PDF Article
Related Articles
Patents Patter

Franklin S. Harris
Appl. Opt. 26(22) 4706-4831 (1987)

Spontaneous anti-Stokes Raman probe for gas temperature measurements in industrial furnaces

George Zikratov, Fang-Yu Yueh, Jagdish P. Singh, O. Perry Norton, R. Arun Kumar, and Robert L. Cook
Appl. Opt. 38(9) 1467-1475 (1999)

Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces

Linda G. Blevins, Christopher R. Shaddix, Shane M. Sickafoose, and Peter M. Walsh
Appl. Opt. 42(30) 6107-6118 (2003)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription