Abstract

This Letter presents an all-optical high-temperature flow sensor based on hot-wire anemometry. High-attenuation fibers (HAFs) were used as the heating elements. High-temperature-stable regenerated fiber Bragg gratings were inscribed in HAFs and in standard telecom fibers as temperature sensors. Using in-fiber light as both the heating power source and the interrogation light source, regenerative fiber Bragg grating sensors were used to gauge the heat transfer from an optically powered heating element induced by the gas flow. Reliable gas flow measurements were demonstrated between 0.066m/s and 0.66m/s from the room temperature to 800°C. This Letter presents a compact, low-cost, and multiflexible approach to measure gas flow for high-temperature harsh environments.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Distributed flow sensing using optical hot -wire grid

Tong Chen, Qingqing Wang, Botao Zhang, Rongzhang Chen, and Kevin P. Chen
Opt. Express 20(8) 8240-8249 (2012)

Highly sensitive miniature fluidic flowmeter based on an FBG heated by Co2+-doped fiber

Zhengyong Liu, Lin Htein, Lun-Kai Cheng, Quincy Martina, Rob Jansen, and Hwa-Yaw Tam
Opt. Express 25(4) 4393-4402 (2017)

Distributed liquid level sensors using self-heated optical fibers for cryogenic liquid management

Tong Chen, Qingqing Wang, Rongzhang Chen, Botao Zhang, Yuankun Lin, and Kevin P. Chen
Appl. Opt. 51(26) 6282-6289 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription