Abstract

This Letter presents an all-optical high-temperature flow sensor based on hot-wire anemometry. High-attenuation fibers (HAFs) were used as the heating elements. High-temperature-stable regenerated fiber Bragg gratings were inscribed in HAFs and in standard telecom fibers as temperature sensors. Using in-fiber light as both the heating power source and the interrogation light source, regenerative fiber Bragg grating sensors were used to gauge the heat transfer from an optically powered heating element induced by the gas flow. Reliable gas flow measurements were demonstrated between 0.066m/s and 0.66m/s from the room temperature to 800°C. This Letter presents a compact, low-cost, and multiflexible approach to measure gas flow for high-temperature harsh environments.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y.-H. Wang, C.-P. Chen, C.-M. Chang, C.-P. Lin, C.-H. Lin, L.-M. Fu, and C.-Y. Lee, Microfluid. Nanofluid. 6, 333 (2009).
    [CrossRef]
  2. G. D. Byrne, S. W. James, and R. P. Tatam, Meas. Sci. Technol. 12, 909 (2001).
  3. O. Frazão, P. Caldas, F. M. Araújo, L. A. Ferreira, and J. L. Santos, Opt. Lett. 32, 1974 (2007).
    [CrossRef]
  4. H. H. Bruun, Hot-Wire Anemometry: Principles and Signal Analysis (Oxford University, 1995).
  5. L. J. Cashdollar and K. P. Chen, IEEE Sens. J. 5, 1327 (2005).
    [CrossRef]
  6. C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, Sens. Actuat. A: Phys. 127, 63 (2006).
    [CrossRef]
  7. D. W. Lamb and A. Hooper, Opt. Lett. 31, 1035 (2006).
    [CrossRef]
  8. P. Caldas, P. A. S. Jorge, G. Rego, O. Frazão, J. L. Santos, L. A. Ferreira, and F. Araújo, Appl. Opt. 50, 2738 (2011).
    [CrossRef]
  9. W. Xinhuai, D. Xinyong, Z. Yan, N. Kai, C. Jia, and C. Zhemin, IEEE Photon. Technol. Lett. 25, 2458 (2013).
    [CrossRef]
  10. S. Gao, A. P. Zhang, H.-Y. Tam, L. H. Cho, and C. Lu, Opt. Express 19, 10124 (2011).
    [CrossRef]
  11. T. Chen, Q. Wang, B. Zhang, R. Chen, and K. P. Chen, Opt. Express 20, 8240 (2012).
    [CrossRef]
  12. Z. Bowei and K. Mojtaba, IEEE Sens. J. 7, 586 (2007).
    [CrossRef]
  13. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, Opt. Lett. 33, 1917 (2008).
    [CrossRef]
  14. S. Bandyopadhyay, J. Canning, P. Biswas, M. Stevenson, and K. Dasgupta, Opt. Express 19, 1198 (2011).
    [CrossRef]
  15. K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, and B. Hof, Science 333, 192 (2011).
    [CrossRef]
  16. E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, Appl. Opt. 50, 2519 (2011).
    [CrossRef]
  17. T. Wang, L.-Y. Shao, J. Canning, and K. Cook, Opt. Lett. 38, 247 (2013).
    [CrossRef]
  18. S. Takagi, J. Phys. E 19, 739 (1986).
    [CrossRef]

2013 (2)

W. Xinhuai, D. Xinyong, Z. Yan, N. Kai, C. Jia, and C. Zhemin, IEEE Photon. Technol. Lett. 25, 2458 (2013).
[CrossRef]

T. Wang, L.-Y. Shao, J. Canning, and K. Cook, Opt. Lett. 38, 247 (2013).
[CrossRef]

2012 (1)

2011 (5)

2009 (1)

Y.-H. Wang, C.-P. Chen, C.-M. Chang, C.-P. Lin, C.-H. Lin, L.-M. Fu, and C.-Y. Lee, Microfluid. Nanofluid. 6, 333 (2009).
[CrossRef]

2008 (1)

2007 (2)

2006 (2)

C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, Sens. Actuat. A: Phys. 127, 63 (2006).
[CrossRef]

D. W. Lamb and A. Hooper, Opt. Lett. 31, 1035 (2006).
[CrossRef]

2005 (1)

L. J. Cashdollar and K. P. Chen, IEEE Sens. J. 5, 1327 (2005).
[CrossRef]

2001 (1)

G. D. Byrne, S. W. James, and R. P. Tatam, Meas. Sci. Technol. 12, 909 (2001).

1986 (1)

S. Takagi, J. Phys. E 19, 739 (1986).
[CrossRef]

Araújo, F.

Araújo, F. M.

Avila, K.

K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, and B. Hof, Science 333, 192 (2011).
[CrossRef]

Avila, M.

K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, and B. Hof, Science 333, 192 (2011).
[CrossRef]

Bandyopadhyay, S.

Barkley, D.

K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, and B. Hof, Science 333, 192 (2011).
[CrossRef]

Bartelt, H.

Becker, M.

Biswas, P.

Bowei, Z.

Z. Bowei and K. Mojtaba, IEEE Sens. J. 7, 586 (2007).
[CrossRef]

Brückner, S.

Bruun, H. H.

H. H. Bruun, Hot-Wire Anemometry: Principles and Signal Analysis (Oxford University, 1995).

Byrne, G. D.

G. D. Byrne, S. W. James, and R. P. Tatam, Meas. Sci. Technol. 12, 909 (2001).

Caldas, P.

Canning, J.

Cashdollar, L. J.

L. J. Cashdollar and K. P. Chen, IEEE Sens. J. 5, 1327 (2005).
[CrossRef]

Chang, C.-M.

Y.-H. Wang, C.-P. Chen, C.-M. Chang, C.-P. Lin, C.-H. Lin, L.-M. Fu, and C.-Y. Lee, Microfluid. Nanofluid. 6, 333 (2009).
[CrossRef]

Chen, C.-P.

Y.-H. Wang, C.-P. Chen, C.-M. Chang, C.-P. Lin, C.-H. Lin, L.-M. Fu, and C.-Y. Lee, Microfluid. Nanofluid. 6, 333 (2009).
[CrossRef]

Chen, K. P.

T. Chen, Q. Wang, B. Zhang, R. Chen, and K. P. Chen, Opt. Express 20, 8240 (2012).
[CrossRef]

C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, Sens. Actuat. A: Phys. 127, 63 (2006).
[CrossRef]

L. J. Cashdollar and K. P. Chen, IEEE Sens. J. 5, 1327 (2005).
[CrossRef]

Chen, R.

Chen, T.

Cho, L. H.

Cho, S. K.

C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, Sens. Actuat. A: Phys. 127, 63 (2006).
[CrossRef]

Chojetzki, C.

Cook, K.

Dasgupta, K.

de Lozar, A.

K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, and B. Hof, Science 333, 192 (2011).
[CrossRef]

Ferreira, L. A.

Frazão, O.

Fu, L.-M.

Y.-H. Wang, C.-P. Chen, C.-M. Chang, C.-P. Lin, C.-H. Lin, L.-M. Fu, and C.-Y. Lee, Microfluid. Nanofluid. 6, 333 (2009).
[CrossRef]

Gao, S.

Hof, B.

K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, and B. Hof, Science 333, 192 (2011).
[CrossRef]

Hooper, A.

James, S. W.

G. D. Byrne, S. W. James, and R. P. Tatam, Meas. Sci. Technol. 12, 909 (2001).

Jewart, C.

C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, Sens. Actuat. A: Phys. 127, 63 (2006).
[CrossRef]

Jia, C.

W. Xinhuai, D. Xinyong, Z. Yan, N. Kai, C. Jia, and C. Zhemin, IEEE Photon. Technol. Lett. 25, 2458 (2013).
[CrossRef]

Jorge, P. A. S.

Kai, N.

W. Xinhuai, D. Xinyong, Z. Yan, N. Kai, C. Jia, and C. Zhemin, IEEE Photon. Technol. Lett. 25, 2458 (2013).
[CrossRef]

Lamb, D. W.

Lee, C.-Y.

Y.-H. Wang, C.-P. Chen, C.-M. Chang, C.-P. Lin, C.-H. Lin, L.-M. Fu, and C.-Y. Lee, Microfluid. Nanofluid. 6, 333 (2009).
[CrossRef]

Lin, C.-H.

Y.-H. Wang, C.-P. Chen, C.-M. Chang, C.-P. Lin, C.-H. Lin, L.-M. Fu, and C.-Y. Lee, Microfluid. Nanofluid. 6, 333 (2009).
[CrossRef]

Lin, C.-P.

Y.-H. Wang, C.-P. Chen, C.-M. Chang, C.-P. Lin, C.-H. Lin, L.-M. Fu, and C.-Y. Lee, Microfluid. Nanofluid. 6, 333 (2009).
[CrossRef]

Lindner, E.

Lu, C.

McMillen, B.

C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, Sens. Actuat. A: Phys. 127, 63 (2006).
[CrossRef]

Mojtaba, K.

Z. Bowei and K. Mojtaba, IEEE Sens. J. 7, 586 (2007).
[CrossRef]

Moxey, D.

K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, and B. Hof, Science 333, 192 (2011).
[CrossRef]

Rego, G.

Rothhardt, M.

Santos, J. L.

Shao, L.-Y.

Stevenson, M.

Takagi, S.

S. Takagi, J. Phys. E 19, 739 (1986).
[CrossRef]

Tam, H.-Y.

Tatam, R. P.

G. D. Byrne, S. W. James, and R. P. Tatam, Meas. Sci. Technol. 12, 909 (2001).

Wang, Q.

Wang, T.

Wang, Y.-H.

Y.-H. Wang, C.-P. Chen, C.-M. Chang, C.-P. Lin, C.-H. Lin, L.-M. Fu, and C.-Y. Lee, Microfluid. Nanofluid. 6, 333 (2009).
[CrossRef]

Xinhuai, W.

W. Xinhuai, D. Xinyong, Z. Yan, N. Kai, C. Jia, and C. Zhemin, IEEE Photon. Technol. Lett. 25, 2458 (2013).
[CrossRef]

Xinyong, D.

W. Xinhuai, D. Xinyong, Z. Yan, N. Kai, C. Jia, and C. Zhemin, IEEE Photon. Technol. Lett. 25, 2458 (2013).
[CrossRef]

Yan, Z.

W. Xinhuai, D. Xinyong, Z. Yan, N. Kai, C. Jia, and C. Zhemin, IEEE Photon. Technol. Lett. 25, 2458 (2013).
[CrossRef]

Zhang, A. P.

Zhang, B.

Zhemin, C.

W. Xinhuai, D. Xinyong, Z. Yan, N. Kai, C. Jia, and C. Zhemin, IEEE Photon. Technol. Lett. 25, 2458 (2013).
[CrossRef]

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (1)

W. Xinhuai, D. Xinyong, Z. Yan, N. Kai, C. Jia, and C. Zhemin, IEEE Photon. Technol. Lett. 25, 2458 (2013).
[CrossRef]

IEEE Sens. J. (2)

Z. Bowei and K. Mojtaba, IEEE Sens. J. 7, 586 (2007).
[CrossRef]

L. J. Cashdollar and K. P. Chen, IEEE Sens. J. 5, 1327 (2005).
[CrossRef]

J. Phys. E (1)

S. Takagi, J. Phys. E 19, 739 (1986).
[CrossRef]

Meas. Sci. Technol. (1)

G. D. Byrne, S. W. James, and R. P. Tatam, Meas. Sci. Technol. 12, 909 (2001).

Microfluid. Nanofluid. (1)

Y.-H. Wang, C.-P. Chen, C.-M. Chang, C.-P. Lin, C.-H. Lin, L.-M. Fu, and C.-Y. Lee, Microfluid. Nanofluid. 6, 333 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Science (1)

K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, and B. Hof, Science 333, 192 (2011).
[CrossRef]

Sens. Actuat. A: Phys. (1)

C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, Sens. Actuat. A: Phys. 127, 63 (2006).
[CrossRef]

Other (1)

H. H. Bruun, Hot-Wire Anemometry: Principles and Signal Analysis (Oxford University, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the experiment setup for sensor calibration and characterization.

Fig. 2.
Fig. 2.

Changes of grating strengths and resonant wavelengths during the regeneration process for FBG in SMF-28 (red) and HAF (blue) respectively. The dot traces are for FBG peak intensity while line traces are for FBG wavelength. Insets, reflection spectra of the seeds at room temperature (T=25°C) and regenerated gratings at 1000°C.

Fig. 3.
Fig. 3.

Resonant wavelength versus ambient temperature for both RFBGs.

Fig. 4.
Fig. 4.

Heating performance of the HAF under different ambient temperatures.

Fig. 5.
Fig. 5.

Reflection spectra of both RFBGs in SMF-28 and HAF under different heating, flow conditions and ambient temperatures (a) 25°C, (b) 800°C.

Fig. 6.
Fig. 6.

Calibrated sensor responses of the flow under different ambient temperatures shown with fitted curves based on the HWA theory. A and B are coefficients of the fitting function with units of mW/mm/°C and mW/mm/°C/(m/s)1/2 respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Hpower=ΔTh(A+Bv),
ΔTh=(dλdT)HAF1(Δλ3+Δλ4)+(dλdT)SMF-281(Δλ1+Δλ2),

Metrics