Abstract

A photonic approach for the generation of a widely tunable arbitrarily phase-coded microwave signal based on a dual-parallel polarization modulator (DP-PolM) is proposed and demonstrated without using any optical or electrical filter. Two orthogonally polarized ± first-order optical sidebands with suppressed carrier are generated based on the DP-PolM, and their polarization directions are aligned with the two principal axes of the following PolM. Phase coding is implemented at a following PolM driven by an electrical coding signal. The inherent frequency-doubling operation can make the system work at a frequency beyond the operation bandwidth of the DP-PolM and the 90° hybrid. Because no optical or electrical filter is applied, good frequency tunability is realized. An experiment is performed. The generation of phase-coded signals tuning from 10 to 40 GHz with up to 10Gbit/s coding rates is verified.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. I. Skolnic, Introduction to Radar (McGraw-Hill, 1962).
  2. J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
    [CrossRef]
  3. P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, J. Lightwave Technol. 30, 1638 (2012).
    [CrossRef]
  4. Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
    [CrossRef]
  5. H. Y. Jiang, L. S. Yan, J. Ye, W. Pan, B. Luo, and X. Zou, Opt. Lett. 38, 1361 (2013).
    [CrossRef]
  6. H. Chi and J. Yao, IEEE Microw. Wirel. Compon. Lett. 18, 371 (2008).
    [CrossRef]
  7. Z. Li, M. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Microw. Wirel. Compon. Lett. 21, 694 (2011).
    [CrossRef]
  8. Y. M. Zhang and S. L. Pan, Opt. Lett. 38, 766 (2013).
    [CrossRef]
  9. L. Gao, X. F. Chen, and J. P. Yao, IEEE Photon. Technol. Lett. 25, 899 (2013).
    [CrossRef]
  10. W. Li, L. X. Wang, M. Li, and N. H. Zhu, Opt. Lett. 38, 3441 (2013).
    [CrossRef]
  11. W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, IEEE Photon. J. 5, 5501507 (2013).
  12. Z. Z. Tang, T. T. Zhang, F. Z. Zhang, and S. L. Pan, Opt. Lett. 38, 5365 (2013).
    [CrossRef]
  13. M. H. Huang, J. B. Fu, and S. L. Pan, Opt. Lett. 37, 1823 (2012).
    [CrossRef]
  14. W. L. Liu, M. G. Wang, and J. P. Yao, J. Lightwave Technol. 31, 1636 (2013).
    [CrossRef]
  15. J. D. Bull, N. A. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, Proc. SPIE 5577, 133 (2004).

2013 (7)

2012 (2)

2011 (2)

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

Z. Li, M. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Microw. Wirel. Compon. Lett. 21, 694 (2011).
[CrossRef]

2008 (1)

H. Chi and J. Yao, IEEE Microw. Wirel. Compon. Lett. 18, 371 (2008).
[CrossRef]

2004 (1)

J. D. Bull, N. A. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, Proc. SPIE 5577, 133 (2004).

2003 (1)

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Bogoni, A.

Bull, J. D.

J. D. Bull, N. A. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, Proc. SPIE 5577, 133 (2004).

Chen, X. F.

L. Gao, X. F. Chen, and J. P. Yao, IEEE Photon. Technol. Lett. 25, 899 (2013).
[CrossRef]

Chi, H.

Z. Li, M. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Microw. Wirel. Compon. Lett. 21, 694 (2011).
[CrossRef]

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

H. Chi and J. Yao, IEEE Microw. Wirel. Compon. Lett. 18, 371 (2008).
[CrossRef]

Chou, J.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Fairburn, M.

J. D. Bull, N. A. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, Proc. SPIE 5577, 133 (2004).

Fu, J. B.

Gao, L.

L. Gao, X. F. Chen, and J. P. Yao, IEEE Photon. Technol. Lett. 25, 899 (2013).
[CrossRef]

Ghanipour, P.

J. D. Bull, N. A. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, Proc. SPIE 5577, 133 (2004).

Ghelfi, P.

Han, Y.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Huang, M. H.

Jaeger, N. A.

J. D. Bull, N. A. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, Proc. SPIE 5577, 133 (2004).

Jalali, B.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Jiang, H. Y.

Kato, H.

J. D. Bull, N. A. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, Proc. SPIE 5577, 133 (2004).

Laghezza, F.

Li, M.

W. Li, L. X. Wang, M. Li, and N. H. Zhu, Opt. Lett. 38, 3441 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, IEEE Photon. J. 5, 5501507 (2013).

Z. Li, M. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Microw. Wirel. Compon. Lett. 21, 694 (2011).
[CrossRef]

Li, W.

W. Li, L. X. Wang, M. Li, and N. H. Zhu, Opt. Lett. 38, 3441 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, IEEE Photon. J. 5, 5501507 (2013).

Li, W. Z.

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

Li, Z.

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

Z. Li, M. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Microw. Wirel. Compon. Lett. 21, 694 (2011).
[CrossRef]

Liu, W. L.

Luo, B.

Pan, S. L.

Pan, W.

Reid, A.

J. D. Bull, N. A. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, Proc. SPIE 5577, 133 (2004).

Scotti, F.

Skolnic, M. I.

M. I. Skolnic, Introduction to Radar (McGraw-Hill, 1962).

Tang, Z. Z.

Wang, H.

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, IEEE Photon. J. 5, 5501507 (2013).

Wang, L. X.

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, IEEE Photon. J. 5, 5501507 (2013).

W. Li, L. X. Wang, M. Li, and N. H. Zhu, Opt. Lett. 38, 3441 (2013).
[CrossRef]

Wang, M. G.

Yan, L. S.

Yao, J.

H. Chi and J. Yao, IEEE Microw. Wirel. Compon. Lett. 18, 371 (2008).
[CrossRef]

Yao, J. P.

L. Gao, X. F. Chen, and J. P. Yao, IEEE Photon. Technol. Lett. 25, 899 (2013).
[CrossRef]

W. L. Liu, M. G. Wang, and J. P. Yao, J. Lightwave Technol. 31, 1636 (2013).
[CrossRef]

Z. Li, M. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Microw. Wirel. Compon. Lett. 21, 694 (2011).
[CrossRef]

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

Ye, J.

Zhang, F. Z.

Zhang, T. T.

Zhang, X. M.

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

Z. Li, M. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Microw. Wirel. Compon. Lett. 21, 694 (2011).
[CrossRef]

Zhang, Y. M.

Zhu, N. H.

W. Li, L. X. Wang, M. Li, and N. H. Zhu, Opt. Lett. 38, 3441 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, IEEE Photon. J. 5, 5501507 (2013).

Zou, X.

IEEE Microw. Wirel. Compon. Lett. (2)

H. Chi and J. Yao, IEEE Microw. Wirel. Compon. Lett. 18, 371 (2008).
[CrossRef]

Z. Li, M. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Microw. Wirel. Compon. Lett. 21, 694 (2011).
[CrossRef]

IEEE Photon. J. (1)

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, IEEE Photon. J. 5, 5501507 (2013).

IEEE Photon. Technol. Lett. (3)

L. Gao, X. F. Chen, and J. P. Yao, IEEE Photon. Technol. Lett. 25, 899 (2013).
[CrossRef]

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Lett. (5)

Proc. SPIE (1)

J. D. Bull, N. A. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, Proc. SPIE 5577, 133 (2004).

Other (1)

M. I. Skolnic, Introduction to Radar (McGraw-Hill, 1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the proposed phase-coded signal generator based on a DP-PolM. LD, laser diode; PC, polarization controller; DP-PolM, dual-parallel polarization modulator; ATT, electrical attenuator; PolM, polarization modulator; Pol, polarizer; PD, photodetector; PPG, pulse pattern generator; DSO, digital sampling oscilloscope. (b) Illustration of the DP-PolM. OTDL, optical tunable delay line; PBS, polarization beam splitter; PBC, polarization beam combiner.

Fig. 2.
Fig. 2.

Optical spectra (a) of the signal at the output of the DP-PolM and (b) the orthogonally polarized signals split by a PBS connected to PC2.

Fig. 3.
Fig. 3.

20 GHz phase-coded waveforms with the coding signal’s amplitude voltage set to (a) 1.77 V, and (b) 1.20 V; (c) respective recovered phase-coding signals corresponding to (a) (blue solid) and (b) (red solid).

Fig. 4.
Fig. 4.

(a) Waveforms of the 5Gbit/s phase-coded 20 GHz signal; (b) the recovered phase profile; (c) autocorrelations of the generated signal. Inset of (c): zoom-in views of the peak.

Fig. 5.
Fig. 5.

Waveforms (blue solid) of the 2.5Gbit/s phase-coded signals with (a) 10 GHz (b) 20 GHz RF carrier; and the 10Gbit/s phase-coded signals with (c) 20 GHz (d) 40 GHz RF carrier; and the corresponding recovered phases (black solid).

Fig. 6.
Fig. 6.

(a) Waveform of the 10Gbit/s phase-coded 40 GHz microwave signal and the recovered phase profile. (b) Autocorrelations of the measured signal. Inset of (b): zoom-in views of the peak.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

[ExEy]=Ecejωct[sinα·(ejβ1ϕ1(t)+jφ1+ejβ1ϕ1(t))cosα·(ejβ2ϕ2(t)+jφ2+ejβ2ϕ2(t))],
[ExEy]=Ecejωct[sinα·(ejβ1sin(ωmt)+jφ1+ejβ1sin(ωmt))cosα·(ejβ2cos(ωmt)+jφ2+ejβ2cos(ωmt))]=Ecejωct[sinα·[(ejφ11)·J1(β1)·ejωmt+(ejφ1+1)·J0(β1)+(ejφ11)·J1(β1)·ejωmt]cosα·[j(1ejφ1)·J1(β2)·ejωmt+(ejφ1+1)·J0(β2)+j(ejφ11)·J1(β2)·ejωmt]],
[ExEy]=2Ec·J1(β)·ejωct[ejωmtejωmtj·ejωmtj·ejωmt].
PF=[cosθ1sinθ1sinθ1cosθ1][ejδ100ejδ1],
[Expc2Eypc2]=[cosθ1sinθ1sinθ1cosθ1][ejδ100ejδ1][ExEy]=[Ex·ejδ1·cosθ1Ey·ejδ1·sinθ1Ex·ejδ1·sinθ1+Ey·ejδ1·cosθ1].
[Expc2Eypc2]=2EcJ1(β)·ejωctjπ/4[ejωmtejωmt].
Eout=2EcJ1(β)ejωctjπ/4(ejωmt+jπVss(t)/Vπ+jφ3+ejωmtjπVss(t)/Vπ),
I(t)REout·Eout*4REc2·J1(β)2cos[2ωmt+2πVss(t)/Vπ].

Metrics