Abstract

A novel structure consisting of an idler-free microwave photonic mixer integrated with a widely tunable and highly selective microwave photonic filter is presented, which is comprised of a spectrum-sliced broadband optical source, a dual-parallel Mach–Zehnder modulator (DPMZM), and a spatial light amplitude and phase processor (SLAPP). By adjusting the optical phase shift in the DPMZM, the dispersion-induced mixing power fading can be eliminated. By applying a phase processor with the SLAPP, the distortion of the mixing filter brought upon by third-order dispersion is also compensated. Experiments are performed and show that the up/down-conversion signal has a clean spectrum and the mixing filter can be tuned from 12 to 20 GHz without any change to the passband shape. The out-of-band suppression ratio of the mixing filter is more than 40 dB, and the 3 dB bandwidth is 140 MHz.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, J. Lightwave Technol. 3, 314 (2008).
  2. B. Cabon, Y. Le Guennec, M. Lourdiane, and G. Maury, in Proceedings of the 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2006), pp. 408–409.
  3. E. H. W. Chan and R. A. Minasian, Opt. Lett. 38, 5292 (2013).
    [CrossRef]
  4. E. H. W. Chan, K. E. Alameh, and R. A. Minasian, Microw. Opt. Technol. Lett. 39, 500 (2003).
    [CrossRef]
  5. E. H. W. Chan and R. Minasian, J. Lightwave Technol. 30, 3580 (2012).
    [CrossRef]
  6. X. Gu, S. Pan, Z. Tang, D. Zhu, R. Guo, and Y. Zhao, Opt. Lett. 38, 2237 (2013).
    [CrossRef]
  7. C. Bohémond, P. Morel, A. Sharaiha, T. Rampone, and B. Pucel, J. Lightwave Technol. 29, 91 (2011).
    [CrossRef]
  8. C. Bohémond, T. Rampone, and A. Sharaiha, J. Lightwave Technol. 29, 2402 (2011).
    [CrossRef]
  9. T. Rampone, A. Lagrost, A. Sharaiha, and A. Kabalan, J. Lightwave Technol. 31, 3597 (2013).
    [CrossRef]
  10. Y. Zhao, X. Pang, L. Deng, X. Yu, X. Zheng, and I. T. Monroy, IEEE Photon. Technol. Lett. 24, 16 (2012).
    [CrossRef]
  11. Y. L. Guennec, G. Maury, J. Yao, and B. Cabon, J. Lightwave Technol. 24, 1277 (2006).
    [CrossRef]
  12. F. Zeng and J. Yao, IEEE Photon. Technol. Lett. 17, 899 (2005).
    [CrossRef]
  13. J. Li, K. Xu, H. Huang, S. Fu, M. Tang, P. Shum, J. Wu, and J. Lin, J. Lightwave Technol. 26, 2202 (2008).
    [CrossRef]
  14. X. Xue, X. Zheng, H. Zhang, and B. Zhou, Opt. Lett. 37, 1451 (2012).
    [CrossRef]
  15. X. Xue, X. Zheng, H. Zhang, and B. Zhou, J. Lightwave Technol. 31, 2263 (2013).
    [CrossRef]

2013

2012

2011

2008

2006

2005

F. Zeng and J. Yao, IEEE Photon. Technol. Lett. 17, 899 (2005).
[CrossRef]

2003

E. H. W. Chan, K. E. Alameh, and R. A. Minasian, Microw. Opt. Technol. Lett. 39, 500 (2003).
[CrossRef]

Alameh, K. E.

E. H. W. Chan, K. E. Alameh, and R. A. Minasian, Microw. Opt. Technol. Lett. 39, 500 (2003).
[CrossRef]

Bohémond, C.

Cabon, B.

Y. L. Guennec, G. Maury, J. Yao, and B. Cabon, J. Lightwave Technol. 24, 1277 (2006).
[CrossRef]

B. Cabon, Y. Le Guennec, M. Lourdiane, and G. Maury, in Proceedings of the 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2006), pp. 408–409.

Chan, E. H. W.

Deng, L.

Y. Zhao, X. Pang, L. Deng, X. Yu, X. Zheng, and I. T. Monroy, IEEE Photon. Technol. Lett. 24, 16 (2012).
[CrossRef]

Fu, S.

Gu, X.

Guennec, Y. L.

Guo, R.

Huang, H.

Kabalan, A.

Lagrost, A.

Le Guennec, Y.

B. Cabon, Y. Le Guennec, M. Lourdiane, and G. Maury, in Proceedings of the 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2006), pp. 408–409.

Li, J.

Lin, J.

Lourdiane, M.

B. Cabon, Y. Le Guennec, M. Lourdiane, and G. Maury, in Proceedings of the 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2006), pp. 408–409.

Maury, G.

Y. L. Guennec, G. Maury, J. Yao, and B. Cabon, J. Lightwave Technol. 24, 1277 (2006).
[CrossRef]

B. Cabon, Y. Le Guennec, M. Lourdiane, and G. Maury, in Proceedings of the 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2006), pp. 408–409.

Minasian, R.

Minasian, R. A.

E. H. W. Chan and R. A. Minasian, Opt. Lett. 38, 5292 (2013).
[CrossRef]

E. H. W. Chan, K. E. Alameh, and R. A. Minasian, Microw. Opt. Technol. Lett. 39, 500 (2003).
[CrossRef]

Monroy, I. T.

Y. Zhao, X. Pang, L. Deng, X. Yu, X. Zheng, and I. T. Monroy, IEEE Photon. Technol. Lett. 24, 16 (2012).
[CrossRef]

Morel, P.

Pan, S.

Pang, X.

Y. Zhao, X. Pang, L. Deng, X. Yu, X. Zheng, and I. T. Monroy, IEEE Photon. Technol. Lett. 24, 16 (2012).
[CrossRef]

Pucel, B.

Rampone, T.

Sharaiha, A.

Shum, P.

Tang, M.

Tang, Z.

Wu, J.

Xu, K.

Xue, X.

Yao, J.

J. Yao, J. Lightwave Technol. 3, 314 (2008).

Y. L. Guennec, G. Maury, J. Yao, and B. Cabon, J. Lightwave Technol. 24, 1277 (2006).
[CrossRef]

F. Zeng and J. Yao, IEEE Photon. Technol. Lett. 17, 899 (2005).
[CrossRef]

Yu, X.

Y. Zhao, X. Pang, L. Deng, X. Yu, X. Zheng, and I. T. Monroy, IEEE Photon. Technol. Lett. 24, 16 (2012).
[CrossRef]

Zeng, F.

F. Zeng and J. Yao, IEEE Photon. Technol. Lett. 17, 899 (2005).
[CrossRef]

Zhang, H.

Zhao, Y.

X. Gu, S. Pan, Z. Tang, D. Zhu, R. Guo, and Y. Zhao, Opt. Lett. 38, 2237 (2013).
[CrossRef]

Y. Zhao, X. Pang, L. Deng, X. Yu, X. Zheng, and I. T. Monroy, IEEE Photon. Technol. Lett. 24, 16 (2012).
[CrossRef]

Zheng, X.

Zhou, B.

Zhu, D.

IEEE Photon. Technol. Lett.

Y. Zhao, X. Pang, L. Deng, X. Yu, X. Zheng, and I. T. Monroy, IEEE Photon. Technol. Lett. 24, 16 (2012).
[CrossRef]

F. Zeng and J. Yao, IEEE Photon. Technol. Lett. 17, 899 (2005).
[CrossRef]

J. Lightwave Technol.

Microw. Opt. Technol. Lett.

E. H. W. Chan, K. E. Alameh, and R. A. Minasian, Microw. Opt. Technol. Lett. 39, 500 (2003).
[CrossRef]

Opt. Lett.

Other

B. Cabon, Y. Le Guennec, M. Lourdiane, and G. Maury, in Proceedings of the 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2006), pp. 408–409.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the proposed idler-free microwave photonic mixer integrated with a widely tunable and highly selective microwave photonic filter. OVDL, optical variable delay line; DPMZM, dual parallel Mach–Zehnder modulator; DCF, dispersion compensation fiber.

Fig. 2.
Fig. 2.

Illustration of the mixing and filtering process. (a) Output optical spectrum of the signals after DPMZM. (b) Electrical spectrum after the PD and how the desired down-conversion signal is selected. (c) Shifted dispersion-induced power fading curve.

Fig. 3.
Fig. 3.

Frequency response of the waveshaper.

Fig. 4.
Fig. 4.

Electrical spectrum at the output of the PD: (a) down-conversion and (b) up-conversion.

Fig. 5.
Fig. 5.

Role of optical phase shift and TOD compensation.

Fig. 6.
Fig. 6.

IF output power versus RF input power.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

iPD(ωIF)=12Rexp(jγ)mH++(ωIF)+12Rexp(jγ)mH(ωIF),
H++(ωIF)=0+{N(Ω)[1+cos(ΩΔτ)]HOF(Ω+ωRF)×HOF*(Ω+ωLO)exp[jθ2(ΩΩc)ωIF]}dΩ,
H(ωIF)=0+{N(Ω)[1+cos(ΩΔτ)]HOF(ΩωLO)×HOF*(ΩωRF)exp[jθ2(ΩΩc)ωIF]}dΩ.
iPD(ωIF)=Rcos(γ)mHo(ωIF),
Ho(ω)=Hb(ω)+12Hb(ωΔτθ2)+12Hb(ω+Δτθ2),
Hb(ω)=0+{N(Ω)|HOF(Ω)|2exp[jθ2(ΩΩc)ω]}dΩ.
iPD(ωRF+ωLO)=Rcos(γ)mHo(ωRF+ωLO),
iPD(2ωRF)=RJ12(ϕRF2)Ho(2ωRF),
iPD(2ωLO)=RJ12(ϕLO2)Ho(2ωLO).

Metrics