Abstract

A new platform is proposed to solve one of the main shortcomings of surface plasmon resonance biosensors, namely, the cross sensitivity to surface and bulk effects. This approach is based on multimode spectroscopy in which three different modes are excited simultaneously. The proposed design consists of an SPR sensor loaded with a dielectric grating. The design parameters (dimensions and wavelength) are optimized with a genetic algorithm. The optimized design has two resonance modes excited with TM polarized light, each sensitive to surface effects, and one TE mode mostly sensitive to variations in the bulk fluid refractive index. Numerical and analytical methods are used to justify the simulation results, which are in good agreement. Finally, it is shown that, by applying three-mode spectroscopy, decoupling the properties of the attached biomaterial from the background index variations is possible with the proposed design.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
    [CrossRef]
  2. J. Homola, Anal. Bioanal. Chem. 377, 528 (2003).
    [CrossRef]
  3. H. E. de Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, Opt. Commun. 82, 425 (1991).
    [CrossRef]
  4. K. A. Peterlinz and R. Georgiadis, Opt. Commun. 130, 260 (1996).
    [CrossRef]
  5. K. S. Johnston, S. R. Karlsen, C. C. Jung, and S. S. Yee, Mater. Chem. Phys. 42, 242 (1995).
    [CrossRef]
  6. S. Nizamov and V. M. Mirsky, Biosens. Bioelectron. 28, 263 (2011).
    [CrossRef]
  7. J. M. Phelps and D. M. Taylor, J. Phys. D 29, 1080 (1996).
    [CrossRef]
  8. N. Nehru, L. Yu, Y. Wei, and J. T. Hastings, IEEE Trans. Nanotechnol. 13, 55 (2014).
    [CrossRef]
  9. P. Adam, J. Dostálek, and J. Homola, Sens. Actuators B 113, 774 (2006).
    [CrossRef]
  10. T. M. Chinowsky and S. S. Yee, Sens. Actuators B 51, 321 (1998).
    [CrossRef]
  11. J. Homola, I. Koudela, and S. S. Yee, Sens. Actuators B 54, 16 (1999).
    [CrossRef]
  12. P. M. Bernard and C. Kress, in Applied Digital Optics: From Micro-optics to Nanophotonics (Wiley, 2009).
  13. F. Bahrami, J. S. Aitchison, and M. Mojahedi, in IEEE Photonic Conference (IEEE, 2012), pp. 208–209.
  14. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1077 (1995).
    [CrossRef]
  15. G. Granet and B. Guizal, J. Opt. Soc. Am. A 13, 1019 (1996).
    [CrossRef]
  16. F. Bahrami, M. Z. Alam, J. S. Aitchison, and M. Mojahedi, Plasmonics 8, 465 (2013).
    [CrossRef]
  17. N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, Biosens. Bioelectron. 22, 1282 (2007).
    [CrossRef]
  18. R. Chuliá-Jordán and D. Santamara-Pérez, Appl. Phys. Lett. 100, 063301 (2012).
    [CrossRef]

2014 (1)

N. Nehru, L. Yu, Y. Wei, and J. T. Hastings, IEEE Trans. Nanotechnol. 13, 55 (2014).
[CrossRef]

2013 (1)

F. Bahrami, M. Z. Alam, J. S. Aitchison, and M. Mojahedi, Plasmonics 8, 465 (2013).
[CrossRef]

2012 (1)

R. Chuliá-Jordán and D. Santamara-Pérez, Appl. Phys. Lett. 100, 063301 (2012).
[CrossRef]

2011 (1)

S. Nizamov and V. M. Mirsky, Biosens. Bioelectron. 28, 263 (2011).
[CrossRef]

2007 (1)

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, Biosens. Bioelectron. 22, 1282 (2007).
[CrossRef]

2006 (1)

P. Adam, J. Dostálek, and J. Homola, Sens. Actuators B 113, 774 (2006).
[CrossRef]

2003 (1)

J. Homola, Anal. Bioanal. Chem. 377, 528 (2003).
[CrossRef]

1999 (2)

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

J. Homola, I. Koudela, and S. S. Yee, Sens. Actuators B 54, 16 (1999).
[CrossRef]

1998 (1)

T. M. Chinowsky and S. S. Yee, Sens. Actuators B 51, 321 (1998).
[CrossRef]

1996 (3)

J. M. Phelps and D. M. Taylor, J. Phys. D 29, 1080 (1996).
[CrossRef]

K. A. Peterlinz and R. Georgiadis, Opt. Commun. 130, 260 (1996).
[CrossRef]

G. Granet and B. Guizal, J. Opt. Soc. Am. A 13, 1019 (1996).
[CrossRef]

1995 (2)

M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1077 (1995).
[CrossRef]

K. S. Johnston, S. R. Karlsen, C. C. Jung, and S. S. Yee, Mater. Chem. Phys. 42, 242 (1995).
[CrossRef]

1991 (1)

H. E. de Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, Opt. Commun. 82, 425 (1991).
[CrossRef]

Adam, P.

P. Adam, J. Dostálek, and J. Homola, Sens. Actuators B 113, 774 (2006).
[CrossRef]

Aitchison, J. S.

F. Bahrami, M. Z. Alam, J. S. Aitchison, and M. Mojahedi, Plasmonics 8, 465 (2013).
[CrossRef]

F. Bahrami, J. S. Aitchison, and M. Mojahedi, in IEEE Photonic Conference (IEEE, 2012), pp. 208–209.

Alam, M. Z.

F. Bahrami, M. Z. Alam, J. S. Aitchison, and M. Mojahedi, Plasmonics 8, 465 (2013).
[CrossRef]

Altenburg, B. S. F.

H. E. de Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, Opt. Commun. 82, 425 (1991).
[CrossRef]

Bahrami, F.

F. Bahrami, M. Z. Alam, J. S. Aitchison, and M. Mojahedi, Plasmonics 8, 465 (2013).
[CrossRef]

F. Bahrami, J. S. Aitchison, and M. Mojahedi, in IEEE Photonic Conference (IEEE, 2012), pp. 208–209.

Bernard, P. M.

P. M. Bernard and C. Kress, in Applied Digital Optics: From Micro-optics to Nanophotonics (Wiley, 2009).

Chinowsky, T. M.

T. M. Chinowsky and S. S. Yee, Sens. Actuators B 51, 321 (1998).
[CrossRef]

Chuliá-Jordán, R.

R. Chuliá-Jordán and D. Santamara-Pérez, Appl. Phys. Lett. 100, 063301 (2012).
[CrossRef]

de Bruijn, H. E.

H. E. de Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, Opt. Commun. 82, 425 (1991).
[CrossRef]

Dostálek, J.

P. Adam, J. Dostálek, and J. Homola, Sens. Actuators B 113, 774 (2006).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

Gaylord, T. K.

Georgiadis, R.

K. A. Peterlinz and R. Georgiadis, Opt. Commun. 130, 260 (1996).
[CrossRef]

Granet, G.

Grann, E. B.

Greve, J.

H. E. de Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, Opt. Commun. 82, 425 (1991).
[CrossRef]

Guizal, B.

Hastings, J. T.

N. Nehru, L. Yu, Y. Wei, and J. T. Hastings, IEEE Trans. Nanotechnol. 13, 55 (2014).
[CrossRef]

Homola, J.

P. Adam, J. Dostálek, and J. Homola, Sens. Actuators B 113, 774 (2006).
[CrossRef]

J. Homola, Anal. Bioanal. Chem. 377, 528 (2003).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

J. Homola, I. Koudela, and S. S. Yee, Sens. Actuators B 54, 16 (1999).
[CrossRef]

Horvath, R.

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, Biosens. Bioelectron. 22, 1282 (2007).
[CrossRef]

Johnston, K. S.

K. S. Johnston, S. R. Karlsen, C. C. Jung, and S. S. Yee, Mater. Chem. Phys. 42, 242 (1995).
[CrossRef]

Jung, C. C.

K. S. Johnston, S. R. Karlsen, C. C. Jung, and S. S. Yee, Mater. Chem. Phys. 42, 242 (1995).
[CrossRef]

Karlsen, S. R.

K. S. Johnston, S. R. Karlsen, C. C. Jung, and S. S. Yee, Mater. Chem. Phys. 42, 242 (1995).
[CrossRef]

Kooyman, R. P. H.

H. E. de Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, Opt. Commun. 82, 425 (1991).
[CrossRef]

Koudela, I.

J. Homola, I. Koudela, and S. S. Yee, Sens. Actuators B 54, 16 (1999).
[CrossRef]

Kress, C.

P. M. Bernard and C. Kress, in Applied Digital Optics: From Micro-optics to Nanophotonics (Wiley, 2009).

Larsen, N. B.

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, Biosens. Bioelectron. 22, 1282 (2007).
[CrossRef]

Mirsky, V. M.

S. Nizamov and V. M. Mirsky, Biosens. Bioelectron. 28, 263 (2011).
[CrossRef]

Moharam, M. G.

Mojahedi, M.

F. Bahrami, M. Z. Alam, J. S. Aitchison, and M. Mojahedi, Plasmonics 8, 465 (2013).
[CrossRef]

F. Bahrami, J. S. Aitchison, and M. Mojahedi, in IEEE Photonic Conference (IEEE, 2012), pp. 208–209.

Nehru, N.

N. Nehru, L. Yu, Y. Wei, and J. T. Hastings, IEEE Trans. Nanotechnol. 13, 55 (2014).
[CrossRef]

Nizamov, S.

S. Nizamov and V. M. Mirsky, Biosens. Bioelectron. 28, 263 (2011).
[CrossRef]

Pedersen, H. C.

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, Biosens. Bioelectron. 22, 1282 (2007).
[CrossRef]

Peterlinz, K. A.

K. A. Peterlinz and R. Georgiadis, Opt. Commun. 130, 260 (1996).
[CrossRef]

Phelps, J. M.

J. M. Phelps and D. M. Taylor, J. Phys. D 29, 1080 (1996).
[CrossRef]

Pommet, D. A.

Santamara-Pérez, D.

R. Chuliá-Jordán and D. Santamara-Pérez, Appl. Phys. Lett. 100, 063301 (2012).
[CrossRef]

Skivesen, N.

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, Biosens. Bioelectron. 22, 1282 (2007).
[CrossRef]

Taylor, D. M.

J. M. Phelps and D. M. Taylor, J. Phys. D 29, 1080 (1996).
[CrossRef]

Thinggaard, S.

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, Biosens. Bioelectron. 22, 1282 (2007).
[CrossRef]

Wei, Y.

N. Nehru, L. Yu, Y. Wei, and J. T. Hastings, IEEE Trans. Nanotechnol. 13, 55 (2014).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

J. Homola, I. Koudela, and S. S. Yee, Sens. Actuators B 54, 16 (1999).
[CrossRef]

T. M. Chinowsky and S. S. Yee, Sens. Actuators B 51, 321 (1998).
[CrossRef]

K. S. Johnston, S. R. Karlsen, C. C. Jung, and S. S. Yee, Mater. Chem. Phys. 42, 242 (1995).
[CrossRef]

Yu, L.

N. Nehru, L. Yu, Y. Wei, and J. T. Hastings, IEEE Trans. Nanotechnol. 13, 55 (2014).
[CrossRef]

Anal. Bioanal. Chem. (1)

J. Homola, Anal. Bioanal. Chem. 377, 528 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

R. Chuliá-Jordán and D. Santamara-Pérez, Appl. Phys. Lett. 100, 063301 (2012).
[CrossRef]

Biosens. Bioelectron. (2)

S. Nizamov and V. M. Mirsky, Biosens. Bioelectron. 28, 263 (2011).
[CrossRef]

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, Biosens. Bioelectron. 22, 1282 (2007).
[CrossRef]

IEEE Trans. Nanotechnol. (1)

N. Nehru, L. Yu, Y. Wei, and J. T. Hastings, IEEE Trans. Nanotechnol. 13, 55 (2014).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Phys. D (1)

J. M. Phelps and D. M. Taylor, J. Phys. D 29, 1080 (1996).
[CrossRef]

Mater. Chem. Phys. (1)

K. S. Johnston, S. R. Karlsen, C. C. Jung, and S. S. Yee, Mater. Chem. Phys. 42, 242 (1995).
[CrossRef]

Opt. Commun. (2)

H. E. de Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, Opt. Commun. 82, 425 (1991).
[CrossRef]

K. A. Peterlinz and R. Georgiadis, Opt. Commun. 130, 260 (1996).
[CrossRef]

Plasmonics (1)

F. Bahrami, M. Z. Alam, J. S. Aitchison, and M. Mojahedi, Plasmonics 8, 465 (2013).
[CrossRef]

Sens. Actuators B (4)

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

P. Adam, J. Dostálek, and J. Homola, Sens. Actuators B 113, 774 (2006).
[CrossRef]

T. M. Chinowsky and S. S. Yee, Sens. Actuators B 51, 321 (1998).
[CrossRef]

J. Homola, I. Koudela, and S. S. Yee, Sens. Actuators B 54, 16 (1999).
[CrossRef]

Other (2)

P. M. Bernard and C. Kress, in Applied Digital Optics: From Micro-optics to Nanophotonics (Wiley, 2009).

F. Bahrami, J. S. Aitchison, and M. Mojahedi, in IEEE Photonic Conference (IEEE, 2012), pp. 208–209.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) 3D schematic of the DGSPR sensor. (b) 2D cross section of the DGSPR sensor. Silica nanowires of a rectangular profile are assumed to be infinite in length with periodicity of Λ, thickness of h, and filling factor of w/Λ.

Fig. 2.
Fig. 2.

(a) Reflectance spectrum for the optimized DGSPR sensor. (b) z-component of the Poynting vector for both TM and TE polarizations at the resonance angle of 62.28°, 71.11°, and 63.5° for the TM1, TM2, and TE1 mode, respectively.

Fig. 3.
Fig. 3.

Dispersion relation of optimized DGSPR sensor calculated using: (a) RCWA method; (b) transfer matrix method; and (c) analytically calculated dispersion relation of the SPR wave in the optimized DGSPR sensor.

Tables (2)

Tables Icon

Table 1. Optimized Dimensions of SPR and DGSPR Sensors for Affinity Sensing

Tables Icon

Table 2. Performance Characteristics of the Optimized SPR and DGSPR Sensors

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

±Re{εmεdεm+εd}=npsin(θSPR)+mλΛ,
nTE=fn12+(1f)n22
nTM=1fn12+(1f)n22,
FoM=CSFsurf,thickTM1.CSFsurf,thickTM2.CSFbulk,indexTE1,
(ΔθTM1ΔθTM2ΔθTE1)=(θTM1daθTM1naθTM1nbθTM2daθTM2naθTM2nbθTE1daθTE1naθTE1nb)S.(ΔdaΔnaΔnb),
(ΔdaΔnaΔnb)=S1×(ΔθTM1ΔθTM2ΔθTE1),S=(0.0030.1720.0651.1810.00010.001561).

Metrics