Abstract

A hybrid cable television (CATV)/microwave (MW)/millimeter-wave (MMW) wavelength-division-multiplexing (WDM) light wave transmission system based on injection-locked Fabry–Perot laser diodes (FP LDs) is proposed and demonstrated. Different from conventional hybrid WDM light wave transmission systems, which need wavelength-selected distributed feedback laser diodes to support various services, the proposed systems employ injection-locked FP LDs to provide multiple applications. Over a 40 km single-mode fiber transport, impressive performances of carrier-to-noise ratio/composite second-order/composite triple-beat/bit error rate are obtained for 550 MHz CATV/20 GHz MW/40 GHz MMW/60 GHz MMW signal transmissions. Such a hybrid WDM light wave transmission system would be attractive for fiber links to provide broadband integrated services.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Y. Li, H. S. Su, C. H. Chang, H. H. Lu, P. Y. Wu, C. Y. Chen, and C. L. Ying, J. Lightwave Technol. 30, 298 (2012).
    [CrossRef]
  2. J. Liu, H. C. Chien, S. H. Fan, B. Chen, J. Yu, S. He, and G. K. Chang, IEEE Photon. Technol. Lett. 23, 1325 (2011).
    [CrossRef]
  3. H. H. Lu, H. L. Ma, and A. S. Patra, IEEE Photon. Technol. Lett. 20, 1618 (2008).
    [CrossRef]
  4. H. K. Sung, E. K. Lau, and M. C. Wu, IEEE Photon. Technol. Lett. 19, 1005 (2007).
    [CrossRef]
  5. S. Mohrdiek, H. Burkhard, and H. Walter, J. Lightwave Technol. 12, 418 (1994).
    [CrossRef]

2012

2011

J. Liu, H. C. Chien, S. H. Fan, B. Chen, J. Yu, S. He, and G. K. Chang, IEEE Photon. Technol. Lett. 23, 1325 (2011).
[CrossRef]

2008

H. H. Lu, H. L. Ma, and A. S. Patra, IEEE Photon. Technol. Lett. 20, 1618 (2008).
[CrossRef]

2007

H. K. Sung, E. K. Lau, and M. C. Wu, IEEE Photon. Technol. Lett. 19, 1005 (2007).
[CrossRef]

1994

S. Mohrdiek, H. Burkhard, and H. Walter, J. Lightwave Technol. 12, 418 (1994).
[CrossRef]

Burkhard, H.

S. Mohrdiek, H. Burkhard, and H. Walter, J. Lightwave Technol. 12, 418 (1994).
[CrossRef]

Chang, C. H.

Chang, G. K.

J. Liu, H. C. Chien, S. H. Fan, B. Chen, J. Yu, S. He, and G. K. Chang, IEEE Photon. Technol. Lett. 23, 1325 (2011).
[CrossRef]

Chen, B.

J. Liu, H. C. Chien, S. H. Fan, B. Chen, J. Yu, S. He, and G. K. Chang, IEEE Photon. Technol. Lett. 23, 1325 (2011).
[CrossRef]

Chen, C. Y.

Chien, H. C.

J. Liu, H. C. Chien, S. H. Fan, B. Chen, J. Yu, S. He, and G. K. Chang, IEEE Photon. Technol. Lett. 23, 1325 (2011).
[CrossRef]

Fan, S. H.

J. Liu, H. C. Chien, S. H. Fan, B. Chen, J. Yu, S. He, and G. K. Chang, IEEE Photon. Technol. Lett. 23, 1325 (2011).
[CrossRef]

He, S.

J. Liu, H. C. Chien, S. H. Fan, B. Chen, J. Yu, S. He, and G. K. Chang, IEEE Photon. Technol. Lett. 23, 1325 (2011).
[CrossRef]

Lau, E. K.

H. K. Sung, E. K. Lau, and M. C. Wu, IEEE Photon. Technol. Lett. 19, 1005 (2007).
[CrossRef]

Li, C. Y.

Liu, J.

J. Liu, H. C. Chien, S. H. Fan, B. Chen, J. Yu, S. He, and G. K. Chang, IEEE Photon. Technol. Lett. 23, 1325 (2011).
[CrossRef]

Lu, H. H.

Ma, H. L.

H. H. Lu, H. L. Ma, and A. S. Patra, IEEE Photon. Technol. Lett. 20, 1618 (2008).
[CrossRef]

Mohrdiek, S.

S. Mohrdiek, H. Burkhard, and H. Walter, J. Lightwave Technol. 12, 418 (1994).
[CrossRef]

Patra, A. S.

H. H. Lu, H. L. Ma, and A. S. Patra, IEEE Photon. Technol. Lett. 20, 1618 (2008).
[CrossRef]

Su, H. S.

Sung, H. K.

H. K. Sung, E. K. Lau, and M. C. Wu, IEEE Photon. Technol. Lett. 19, 1005 (2007).
[CrossRef]

Walter, H.

S. Mohrdiek, H. Burkhard, and H. Walter, J. Lightwave Technol. 12, 418 (1994).
[CrossRef]

Wu, M. C.

H. K. Sung, E. K. Lau, and M. C. Wu, IEEE Photon. Technol. Lett. 19, 1005 (2007).
[CrossRef]

Wu, P. Y.

Ying, C. L.

Yu, J.

J. Liu, H. C. Chien, S. H. Fan, B. Chen, J. Yu, S. He, and G. K. Chang, IEEE Photon. Technol. Lett. 23, 1325 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Liu, H. C. Chien, S. H. Fan, B. Chen, J. Yu, S. He, and G. K. Chang, IEEE Photon. Technol. Lett. 23, 1325 (2011).
[CrossRef]

H. H. Lu, H. L. Ma, and A. S. Patra, IEEE Photon. Technol. Lett. 20, 1618 (2008).
[CrossRef]

H. K. Sung, E. K. Lau, and M. C. Wu, IEEE Photon. Technol. Lett. 19, 1005 (2007).
[CrossRef]

J. Lightwave Technol.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Configuration of the proposed hybrid 550 MHz CATV, 20 GHz MW, 40 GHz MMW, and 60 GHz MMW WDM light wave transmission systems.

Fig. 2.
Fig. 2.

(a) Optical spectrum of free-running FP LD1 without CATV signal modulation. (b) Optical spectra of free-running FP LD1 and injection-locked FP LD1 with CATV signal modulation.

Fig. 3.
Fig. 3.

Optical spectra of free-running FP LD2 (a) without RF PB signal modulation and (b) with RF PB signal modulation. (c) Optical spectrum of injection-locked FP LD2 with RF PB signal modulation.

Fig. 4.
Fig. 4.

(a) Optical spectrum of injection-locked FP LD3 with RF PB signal modulation. (b) Optical spectrum of injection-locked FP LD4 with RF PB signal modulation.

Fig. 5.
Fig. 5.

Measured CNR/CSO/CTB values under NTSC channel number.

Fig. 6.
Fig. 6.

Measured BER curves of the 5Gbps/20GHz MW signal.

Fig. 7.
Fig. 7.

Measured BER curves of the 5Gbps/40GHz MMW signal.

Fig. 8.
Fig. 8.

Measured BER curves of the 5Gbps/60GHz MMW signal.

Tables (1)

Tables Icon

Table 1. Performances Compared between Injection-Locked FP LDs and DFB LDs

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d<±kc2πSiS(1+α2),

Metrics