Abstract

Dynamic laser speckles contain motion information of scattering particles which can be estimated by laser speckle contrast analysis (LASCA). In this work, an entropy-based method was proposed to provide a more robust estimation of motion speed. An in vitro flow simulation experiment confirmed a simple linear relation between entropy, exposure time, and speed. A multimodality optical imaging setup is developed to validate the advantages of the entropy method based on laser speckle imaging, green light imaging, and fluorescence imaging. The entropy method overcomes traditional LASCA with less noisy interference, and extracts more visible and detailed vasculatures in vivo. Furthermore, the entropy method provides a more accurate estimation and a stable pattern of blood flow activations in the rat’s somatosensory area under multitrial hand paw stimulations.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Briers, Physiol. Meas. 22, R35 (2001).
    [CrossRef]
  2. M. D. Stern, Nature 254, 56 (1975).
    [CrossRef]
  3. J. D. Briers and S. Webster, J. Biomed. Opt. 1, 174 (1996).
    [CrossRef]
  4. A. K. Dunn, B. Hayrunnisa, M. Moskowitz, and D. Boas, J. Cereb. Blood Flow Metabol. 21, 195 (2001).
    [CrossRef]
  5. A. Rege, K. Murari, A. Seifert, A. P. Pathak, and N. V. Thakor, J. Biomed. Opt. 16, 056006 (2011).
    [CrossRef]
  6. P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, Opt. Lett. 31, 1824 (2006).
    [CrossRef]
  7. P. Miao, N. Li, N. V. Thakor, and S. Tong, Opt. Express 18, 218 (2010).
    [CrossRef]
  8. H. Cheng and T. Q. Duong, Opt. Lett. 32, 2188 (2007).
    [CrossRef]
  9. D. A. Boas and A. K. Dunn, J. Biomed. Opt. 15, 011109 (2010).
    [CrossRef]
  10. R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, Rev. Sci. Instrum. 76, 093110 (2005).
    [CrossRef]
  11. R. Bonner and R. Nossal, Appl. Opt. 20, 2097 (1981).
    [CrossRef]
  12. S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, J. Cereb. Blood Flow Metabol. 33, 798 (2013).
    [CrossRef]
  13. T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, 2006).
  14. J. A. Bonachela, H. Hinrichsen, and M. A. Munoz, J. Phys. A 41, 202001 (2008).
    [CrossRef]
  15. P. Grassberger, Phys. Lett. A 128, 369 (1988).
    [CrossRef]
  16. M. S. Roulston, Physica D 125, 285 (1999).
    [CrossRef]
  17. T. Schrümann, J. Phys. A 37, L295 (2004).
    [CrossRef]
  18. K. Murari, N. Li, A. Rege, X. Jia, A. All, and N. V. Thakor, Appl. Opt. 46, 5340 (2007).
    [CrossRef]
  19. A. Humeau-Heurtier, G. Mahe, S. Durand, and P. Abraham, IEEE Trans. Biomed. Eng. 60, 872 (2013).
    [CrossRef]

2013

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, J. Cereb. Blood Flow Metabol. 33, 798 (2013).
[CrossRef]

A. Humeau-Heurtier, G. Mahe, S. Durand, and P. Abraham, IEEE Trans. Biomed. Eng. 60, 872 (2013).
[CrossRef]

2011

A. Rege, K. Murari, A. Seifert, A. P. Pathak, and N. V. Thakor, J. Biomed. Opt. 16, 056006 (2011).
[CrossRef]

2010

D. A. Boas and A. K. Dunn, J. Biomed. Opt. 15, 011109 (2010).
[CrossRef]

P. Miao, N. Li, N. V. Thakor, and S. Tong, Opt. Express 18, 218 (2010).
[CrossRef]

2008

J. A. Bonachela, H. Hinrichsen, and M. A. Munoz, J. Phys. A 41, 202001 (2008).
[CrossRef]

2007

2006

2005

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

2004

T. Schrümann, J. Phys. A 37, L295 (2004).
[CrossRef]

2001

J. D. Briers, Physiol. Meas. 22, R35 (2001).
[CrossRef]

A. K. Dunn, B. Hayrunnisa, M. Moskowitz, and D. Boas, J. Cereb. Blood Flow Metabol. 21, 195 (2001).
[CrossRef]

1999

M. S. Roulston, Physica D 125, 285 (1999).
[CrossRef]

1996

J. D. Briers and S. Webster, J. Biomed. Opt. 1, 174 (1996).
[CrossRef]

1988

P. Grassberger, Phys. Lett. A 128, 369 (1988).
[CrossRef]

1981

1975

M. D. Stern, Nature 254, 56 (1975).
[CrossRef]

Abraham, P.

A. Humeau-Heurtier, G. Mahe, S. Durand, and P. Abraham, IEEE Trans. Biomed. Eng. 60, 872 (2013).
[CrossRef]

All, A.

Bandyopadhyay, R.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Boas, D.

A. K. Dunn, B. Hayrunnisa, M. Moskowitz, and D. Boas, J. Cereb. Blood Flow Metabol. 21, 195 (2001).
[CrossRef]

Boas, D. A.

D. A. Boas and A. K. Dunn, J. Biomed. Opt. 15, 011109 (2010).
[CrossRef]

Bonachela, J. A.

J. A. Bonachela, H. Hinrichsen, and M. A. Munoz, J. Phys. A 41, 202001 (2008).
[CrossRef]

Bonner, R.

Briers, J. D.

J. D. Briers, Physiol. Meas. 22, R35 (2001).
[CrossRef]

J. D. Briers and S. Webster, J. Biomed. Opt. 1, 174 (1996).
[CrossRef]

Cheng, H.

Cover, T. M.

T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, 2006).

Dixon, P. K.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Dunn, A. K.

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, J. Cereb. Blood Flow Metabol. 33, 798 (2013).
[CrossRef]

D. A. Boas and A. K. Dunn, J. Biomed. Opt. 15, 011109 (2010).
[CrossRef]

A. K. Dunn, B. Hayrunnisa, M. Moskowitz, and D. Boas, J. Cereb. Blood Flow Metabol. 21, 195 (2001).
[CrossRef]

Duong, T. Q.

Durand, S.

A. Humeau-Heurtier, G. Mahe, S. Durand, and P. Abraham, IEEE Trans. Biomed. Eng. 60, 872 (2013).
[CrossRef]

Durian, D. J.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Gittings, A. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Grassberger, P.

P. Grassberger, Phys. Lett. A 128, 369 (1988).
[CrossRef]

Hayrunnisa, B.

A. K. Dunn, B. Hayrunnisa, M. Moskowitz, and D. Boas, J. Cereb. Blood Flow Metabol. 21, 195 (2001).
[CrossRef]

Hinrichsen, H.

J. A. Bonachela, H. Hinrichsen, and M. A. Munoz, J. Phys. A 41, 202001 (2008).
[CrossRef]

Humeau-Heurtier, A.

A. Humeau-Heurtier, G. Mahe, S. Durand, and P. Abraham, IEEE Trans. Biomed. Eng. 60, 872 (2013).
[CrossRef]

Jia, X.

Jones, T. A.

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, J. Cereb. Blood Flow Metabol. 33, 798 (2013).
[CrossRef]

Kazmi, S. M. S.

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, J. Cereb. Blood Flow Metabol. 33, 798 (2013).
[CrossRef]

Li, N.

Li, P.

Luo, Q.

Mahe, G.

A. Humeau-Heurtier, G. Mahe, S. Durand, and P. Abraham, IEEE Trans. Biomed. Eng. 60, 872 (2013).
[CrossRef]

Miao, P.

Moskowitz, M.

A. K. Dunn, B. Hayrunnisa, M. Moskowitz, and D. Boas, J. Cereb. Blood Flow Metabol. 21, 195 (2001).
[CrossRef]

Munoz, M. A.

J. A. Bonachela, H. Hinrichsen, and M. A. Munoz, J. Phys. A 41, 202001 (2008).
[CrossRef]

Murari, K.

A. Rege, K. Murari, A. Seifert, A. P. Pathak, and N. V. Thakor, J. Biomed. Opt. 16, 056006 (2011).
[CrossRef]

K. Murari, N. Li, A. Rege, X. Jia, A. All, and N. V. Thakor, Appl. Opt. 46, 5340 (2007).
[CrossRef]

Ni, S.

Nossal, R.

Parthasarthy, A. B.

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, J. Cereb. Blood Flow Metabol. 33, 798 (2013).
[CrossRef]

Pathak, A. P.

A. Rege, K. Murari, A. Seifert, A. P. Pathak, and N. V. Thakor, J. Biomed. Opt. 16, 056006 (2011).
[CrossRef]

Rege, A.

A. Rege, K. Murari, A. Seifert, A. P. Pathak, and N. V. Thakor, J. Biomed. Opt. 16, 056006 (2011).
[CrossRef]

K. Murari, N. Li, A. Rege, X. Jia, A. All, and N. V. Thakor, Appl. Opt. 46, 5340 (2007).
[CrossRef]

Roulston, M. S.

M. S. Roulston, Physica D 125, 285 (1999).
[CrossRef]

Schrümann, T.

T. Schrümann, J. Phys. A 37, L295 (2004).
[CrossRef]

Seifert, A.

A. Rege, K. Murari, A. Seifert, A. P. Pathak, and N. V. Thakor, J. Biomed. Opt. 16, 056006 (2011).
[CrossRef]

Song, N. E.

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, J. Cereb. Blood Flow Metabol. 33, 798 (2013).
[CrossRef]

Stern, M. D.

M. D. Stern, Nature 254, 56 (1975).
[CrossRef]

Suh, S. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Thakor, N. V.

Thomas, J. A.

T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, 2006).

Tong, S.

Webster, S.

J. D. Briers and S. Webster, J. Biomed. Opt. 1, 174 (1996).
[CrossRef]

Zeng, S.

Zhang, L.

Appl. Opt.

IEEE Trans. Biomed. Eng.

A. Humeau-Heurtier, G. Mahe, S. Durand, and P. Abraham, IEEE Trans. Biomed. Eng. 60, 872 (2013).
[CrossRef]

J. Biomed. Opt.

D. A. Boas and A. K. Dunn, J. Biomed. Opt. 15, 011109 (2010).
[CrossRef]

J. D. Briers and S. Webster, J. Biomed. Opt. 1, 174 (1996).
[CrossRef]

A. Rege, K. Murari, A. Seifert, A. P. Pathak, and N. V. Thakor, J. Biomed. Opt. 16, 056006 (2011).
[CrossRef]

J. Cereb. Blood Flow Metabol.

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, J. Cereb. Blood Flow Metabol. 33, 798 (2013).
[CrossRef]

A. K. Dunn, B. Hayrunnisa, M. Moskowitz, and D. Boas, J. Cereb. Blood Flow Metabol. 21, 195 (2001).
[CrossRef]

J. Phys. A

J. A. Bonachela, H. Hinrichsen, and M. A. Munoz, J. Phys. A 41, 202001 (2008).
[CrossRef]

T. Schrümann, J. Phys. A 37, L295 (2004).
[CrossRef]

Nature

M. D. Stern, Nature 254, 56 (1975).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Lett. A

P. Grassberger, Phys. Lett. A 128, 369 (1988).
[CrossRef]

Physica D

M. S. Roulston, Physica D 125, 285 (1999).
[CrossRef]

Physiol. Meas.

J. D. Briers, Physiol. Meas. 22, R35 (2001).
[CrossRef]

Rev. Sci. Instrum.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Other

T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Multimodality imaging setup was developed for laser speckle imaging, green light imaging, and fluorescence imaging of blood flow. (b) In the in vitro blood flow imaging experiment, entropy analysis of dynamic laser speckles demonstrates (c) a simply linear relation in between entropy, speed, and exposure time. (d) LASCA, on the other hand, suffers from noise and bias in speed estimation based on its theoretical model.

Fig. 2.
Fig. 2.

In vivo laser speckle imaging presents the relative CBF map using (a) entropy analysis and (b) LASCA. (c) Green light imaging and (d) fluorescence imaging demonstrate the details of cerebral vasculature. Compared to LASCA, the entropy image contains more blood vessels [indicated by arrows and circle in (a)], and this observation is confirmed by other imaging modalities [(c) and (d)]. (e)–(h) show the values of the line in (a) extracted from the results of the different imaging methods. The entropy analysis shows less noisy disturbances in both vessel [arrow in (e)] and tissue area [circle in (e)].

Fig. 3.
Fig. 3.

(a) Functional laser speckle imaging of the rat’s somatosensory cortex. Relative changes of blood flow were estimated using [(b), (d)] LASCA and [(c), (e)] entropy method under sham (0.3 mA) and functional (3.5 mA) stimulations of hand paw. (d) and (f) Compared to LASCA, the entropy method demonstrates (e) a more accurate estimation of blood flow changes and (g) a stable pattern of blood flow activations among trials.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

K=σ/μ.
K2=β{τcT+τc22T2[exp(2Tτc)1]}.
v˜(T,v)=T/τc=αTv.
H^=1N+2i=1M[(ni+1)j=ni+2N+21j],
H^(T,v)=a·Tb·v+c.

Metrics