Abstract

We reported a dual-wavelength femtosecond optical parametric oscillator (OPO) based on a temperature-tuned LiB3O5 crystal. The OPO was synchronously pumped by a frequency-doubled, mode-locked Yb-fiber laser amplifier, providing a 520 nm pump laser with durations of 250 fs at a repetition rate of 57 MHz. High efficiency and dual-wavelength operation are obtained over the ranges of 658–846 nm and 2.45–1.35 μm. The observed dual-wavelength tuning is in agreement with the values predicted by numerical simulation. Moreover, a sum-frequency yellow laser of the longer signal and idler tunable from 555 to 623 nm with practical power is achieved. With an 8% output coupler, the maximum signal output power is 390 mW pumped at 3 W with dual-wavelength operation, while the maximum power of sum-frequency generation is 110 mW at 590 nm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, Opt. Lett. 31, 1872 (2006).
    [CrossRef]
  2. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, Nat. Photonics 3, 144 (2009).
    [CrossRef]
  3. J. Sun, B. J. Gale, and D. T. Reid, Opt. Lett. 31, 2021 (2006).
    [CrossRef]
  4. J. Sun, B. J. Gale, and D. T. Reid, Opt. Lett. 32, 1396 (2007).
    [CrossRef]
  5. T. Taniuchi, J. Shikata, and H. Ito, Electron. Lett. 36, 1414 (2000).
    [CrossRef]
  6. R. Hegenbarth, A. Steinmann, S. Sarkisov, and H. Giessen, Opt. Lett. 37, 3513 (2012).
    [CrossRef]
  7. K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Appl. Phys. Lett. 70, 3341 (1997).
    [CrossRef]
  8. G. K. Samanta and M. Ebrahim-Zadeh, Opt. Lett. 36, 3033 (2011).
    [CrossRef]
  9. M. Ebrahimzadeh, G. J. Hall, and A. I. Ferguson, Opt. Lett. 18, 278 (1993).
    [CrossRef]
  10. B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 72, 137 (2001).
    [CrossRef]
  11. T. Schröder, K.-J. Boller, A. Fix, and R. Wallenstein, Appl. Phys. B 58, 425 (1994).
    [CrossRef]
  12. C. Xie, M. Hu, Z. Xu, W. Wu, H. Gao, P. Qin, D. Zhang, B. Liu, and Q. Wang, Appl. Phys. Lett 101, 151111 (2012).
    [CrossRef]
  13. M. Ebrahimzadeh, G. J. Hall, and A. I. Ferguson, Opt. Lett. 16, 1744 (1991).
    [CrossRef]
  14. J. M. Evans, D. E. Spence, D. Burns, and W. Sibbett, Opt. Lett. 18, 1074 (1993).
    [CrossRef]

2012

C. Xie, M. Hu, Z. Xu, W. Wu, H. Gao, P. Qin, D. Zhang, B. Liu, and Q. Wang, Appl. Phys. Lett 101, 151111 (2012).
[CrossRef]

R. Hegenbarth, A. Steinmann, S. Sarkisov, and H. Giessen, Opt. Lett. 37, 3513 (2012).
[CrossRef]

2011

2009

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, Nat. Photonics 3, 144 (2009).
[CrossRef]

2007

2006

2001

B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 72, 137 (2001).
[CrossRef]

2000

T. Taniuchi, J. Shikata, and H. Ito, Electron. Lett. 36, 1414 (2000).
[CrossRef]

1997

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Appl. Phys. Lett. 70, 3341 (1997).
[CrossRef]

1994

T. Schröder, K.-J. Boller, A. Fix, and R. Wallenstein, Appl. Phys. B 58, 425 (1994).
[CrossRef]

1993

1991

Arbore, M. A.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Appl. Phys. Lett. 70, 3341 (1997).
[CrossRef]

Boller, K.-J.

T. Schröder, K.-J. Boller, A. Fix, and R. Wallenstein, Appl. Phys. B 58, 425 (1994).
[CrossRef]

Burns, D.

Burr, K. C.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Appl. Phys. Lett. 70, 3341 (1997).
[CrossRef]

Ebrahimzadeh, M.

Ebrahim-Zadeh, M.

Eggeling, C.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, Nat. Photonics 3, 144 (2009).
[CrossRef]

Evans, C. L.

Evans, J. M.

Fejer, M. M.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Appl. Phys. Lett. 70, 3341 (1997).
[CrossRef]

Ferguson, A. I.

Fix, A.

T. Schröder, K.-J. Boller, A. Fix, and R. Wallenstein, Appl. Phys. B 58, 425 (1994).
[CrossRef]

Gale, B. J.

Ganikhanov, F.

Gao, H.

C. Xie, M. Hu, Z. Xu, W. Wu, H. Gao, P. Qin, D. Zhang, B. Liu, and Q. Wang, Appl. Phys. Lett 101, 151111 (2012).
[CrossRef]

Giessen, H.

Hall, G. J.

Han, K. Y.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, Nat. Photonics 3, 144 (2009).
[CrossRef]

Hegenbarth, R.

Hell, S. W.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, Nat. Photonics 3, 144 (2009).
[CrossRef]

Hu, M.

C. Xie, M. Hu, Z. Xu, W. Wu, H. Gao, P. Qin, D. Zhang, B. Liu, and Q. Wang, Appl. Phys. Lett 101, 151111 (2012).
[CrossRef]

Irvine, S. E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, Nat. Photonics 3, 144 (2009).
[CrossRef]

Ito, H.

T. Taniuchi, J. Shikata, and H. Ito, Electron. Lett. 36, 1414 (2000).
[CrossRef]

Liu, B.

C. Xie, M. Hu, Z. Xu, W. Wu, H. Gao, P. Qin, D. Zhang, B. Liu, and Q. Wang, Appl. Phys. Lett 101, 151111 (2012).
[CrossRef]

Nebel, A.

B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 72, 137 (2001).
[CrossRef]

Qin, P.

C. Xie, M. Hu, Z. Xu, W. Wu, H. Gao, P. Qin, D. Zhang, B. Liu, and Q. Wang, Appl. Phys. Lett 101, 151111 (2012).
[CrossRef]

Reid, D. T.

Rittweger, E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, Nat. Photonics 3, 144 (2009).
[CrossRef]

Ruffing, B.

B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 72, 137 (2001).
[CrossRef]

Saar, B. G.

Samanta, G. K.

Sarkisov, S.

Schröder, T.

T. Schröder, K.-J. Boller, A. Fix, and R. Wallenstein, Appl. Phys. B 58, 425 (1994).
[CrossRef]

Shikata, J.

T. Taniuchi, J. Shikata, and H. Ito, Electron. Lett. 36, 1414 (2000).
[CrossRef]

Sibbett, W.

Spence, D. E.

Steinmann, A.

Sun, J.

Tang, C. L.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Appl. Phys. Lett. 70, 3341 (1997).
[CrossRef]

Taniuchi, T.

T. Taniuchi, J. Shikata, and H. Ito, Electron. Lett. 36, 1414 (2000).
[CrossRef]

Wallenstein, R.

B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 72, 137 (2001).
[CrossRef]

T. Schröder, K.-J. Boller, A. Fix, and R. Wallenstein, Appl. Phys. B 58, 425 (1994).
[CrossRef]

Wang, Q.

C. Xie, M. Hu, Z. Xu, W. Wu, H. Gao, P. Qin, D. Zhang, B. Liu, and Q. Wang, Appl. Phys. Lett 101, 151111 (2012).
[CrossRef]

Wu, W.

C. Xie, M. Hu, Z. Xu, W. Wu, H. Gao, P. Qin, D. Zhang, B. Liu, and Q. Wang, Appl. Phys. Lett 101, 151111 (2012).
[CrossRef]

Xie, C.

C. Xie, M. Hu, Z. Xu, W. Wu, H. Gao, P. Qin, D. Zhang, B. Liu, and Q. Wang, Appl. Phys. Lett 101, 151111 (2012).
[CrossRef]

Xie, X. S.

Xu, Z.

C. Xie, M. Hu, Z. Xu, W. Wu, H. Gao, P. Qin, D. Zhang, B. Liu, and Q. Wang, Appl. Phys. Lett 101, 151111 (2012).
[CrossRef]

Zhang, D.

C. Xie, M. Hu, Z. Xu, W. Wu, H. Gao, P. Qin, D. Zhang, B. Liu, and Q. Wang, Appl. Phys. Lett 101, 151111 (2012).
[CrossRef]

Appl. Phys. B

B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 72, 137 (2001).
[CrossRef]

T. Schröder, K.-J. Boller, A. Fix, and R. Wallenstein, Appl. Phys. B 58, 425 (1994).
[CrossRef]

Appl. Phys. Lett

C. Xie, M. Hu, Z. Xu, W. Wu, H. Gao, P. Qin, D. Zhang, B. Liu, and Q. Wang, Appl. Phys. Lett 101, 151111 (2012).
[CrossRef]

Appl. Phys. Lett.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Appl. Phys. Lett. 70, 3341 (1997).
[CrossRef]

Electron. Lett.

T. Taniuchi, J. Shikata, and H. Ito, Electron. Lett. 36, 1414 (2000).
[CrossRef]

Nat. Photonics

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, Nat. Photonics 3, 144 (2009).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup of dual-wavelength LBO OPO. M1–M4: mirrors, OC: output coupler, L1 and L2: lens, HWP: half-wave plate, PBS: polarizing beam splitter, P1 and P2: CaF2 prism pair.

Fig. 2.
Fig. 2.

Evolution of the dual-wavelength spectra of the LBO OPO at a temperature of 140°C.

Fig. 3.
Fig. 3.

Corresponding sum-frequency-generation spectra in dual-wavelength operations of the LBO OPO at a temperature of 140°C.

Fig. 4.
Fig. 4.

(a) Calculated signal, idler, and sum-frequency wavelength of 520 nm pumped LBO OPO. (b) Calculated signal and idler wavelength of 520 nm pumped LBO OPO (black solid curve) and corresponding experimental signal wavelength (red squares). For T=140°C170°C, additional sum frequency is generated in the LBO crystal (555623nm) (red circles). (c) Wavelength-tuning property with the temperature of the OPO. The left area of the red dashed line is the dual-wavelength region, and each color indicates the two signal spectra; the right area of the red dashed line is the single-wavelength region above 170°C.

Fig. 5.
Fig. 5.

Signal output power dependent on temperature in the dual-wavelength oscillated region (red squares) and the single-wavelength region (black circles); the black triangles indicate the yellow SFG laser power; the inset shows the typical autocorrelation of the signal.

Fig. 6.
Fig. 6.

Signal and SFG power as a function of the pump power at a temperature of 150°C. The OPO is operating at dual wavelengths of 666 and 787 nm, and the SFG is at 590 nm.

Metrics