Abstract

We present a series of long-wave-infrared (LWIR) polarimetric-based thermal images of facial profiles in which polarization-state information of the image-forming radiance is retained and displayed. The resultant polarimetric images show enhanced facial features, additional texture, and details that are not present in corresponding conventional thermal imagery. It has been generally thought that conventional thermal imagery (MidIR or LWIR) could not produce the detailed spatial information required for reliable human identification due to the so-called “ghosting” effect often seen in thermal imagery of human subjects. By using polarimetric information, we are able to extract subtle surface features of the human face, thus improving subject identification. Polarimetric image sets considered include the conventional thermal intensity image, S0, the two Stokes images, S1 and S2, and a Stokes image product called the degree-of-linear-polarization image.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Sandus, Appl. Opt. 4, 1634 (1965).
    [CrossRef]
  2. J. E. Solomon, Appl. Opt. 20, 1537 (1981).
    [CrossRef]
  3. K. Gurton, M. Felton, and L. Pezzaniti, Opt. Express 20, 22344 (2012).
    [CrossRef]
  4. M. Felton, K. Gurton, and L. Pezzaniti, Opt. Express18, 15704 (2010).
  5. K. Gurton, R. Dahmani, and G. Videen, Appl. Opt. 44, 5361 (2005).
    [CrossRef]
  6. D. Jordan and G. Lewis, Opt. Lett. 19, 692 (1994).
    [CrossRef]
  7. P. P. Feofilov, The Physical Basis of Polarized Emission (Consultants Bureau, 1961).
  8. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (McGraw-Hill, 1981).
  9. M. Born and E. Wolf, Principles of Optics (Pergamon, 1959).
  10. J. Scott Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, Appl. Opt. 45, 5453 (2006).
    [CrossRef]
  11. K. Gurton, M. A. Felton, R. Mack, C. Farlow, L. Pezzaniti, M. W. Kudenov, and D. LeMaster, Proc. SPIE 7672, 767205 (2010).
    [CrossRef]

2012

2010

K. Gurton, M. A. Felton, R. Mack, C. Farlow, L. Pezzaniti, M. W. Kudenov, and D. LeMaster, Proc. SPIE 7672, 767205 (2010).
[CrossRef]

2006

2005

1994

1981

1965

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1959).

Chenault, D. B.

Dahmani, R.

Farlow, C.

K. Gurton, M. A. Felton, R. Mack, C. Farlow, L. Pezzaniti, M. W. Kudenov, and D. LeMaster, Proc. SPIE 7672, 767205 (2010).
[CrossRef]

Felton, M.

K. Gurton, M. Felton, and L. Pezzaniti, Opt. Express 20, 22344 (2012).
[CrossRef]

M. Felton, K. Gurton, and L. Pezzaniti, Opt. Express18, 15704 (2010).

Felton, M. A.

K. Gurton, M. A. Felton, R. Mack, C. Farlow, L. Pezzaniti, M. W. Kudenov, and D. LeMaster, Proc. SPIE 7672, 767205 (2010).
[CrossRef]

Feofilov, P. P.

P. P. Feofilov, The Physical Basis of Polarized Emission (Consultants Bureau, 1961).

Goldstein, D. L.

Gurton, K.

K. Gurton, M. Felton, and L. Pezzaniti, Opt. Express 20, 22344 (2012).
[CrossRef]

K. Gurton, M. A. Felton, R. Mack, C. Farlow, L. Pezzaniti, M. W. Kudenov, and D. LeMaster, Proc. SPIE 7672, 767205 (2010).
[CrossRef]

K. Gurton, R. Dahmani, and G. Videen, Appl. Opt. 44, 5361 (2005).
[CrossRef]

M. Felton, K. Gurton, and L. Pezzaniti, Opt. Express18, 15704 (2010).

Howell, J. R.

R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (McGraw-Hill, 1981).

Jordan, D.

Kudenov, M. W.

K. Gurton, M. A. Felton, R. Mack, C. Farlow, L. Pezzaniti, M. W. Kudenov, and D. LeMaster, Proc. SPIE 7672, 767205 (2010).
[CrossRef]

LeMaster, D.

K. Gurton, M. A. Felton, R. Mack, C. Farlow, L. Pezzaniti, M. W. Kudenov, and D. LeMaster, Proc. SPIE 7672, 767205 (2010).
[CrossRef]

Lewis, G.

Mack, R.

K. Gurton, M. A. Felton, R. Mack, C. Farlow, L. Pezzaniti, M. W. Kudenov, and D. LeMaster, Proc. SPIE 7672, 767205 (2010).
[CrossRef]

Pezzaniti, L.

K. Gurton, M. Felton, and L. Pezzaniti, Opt. Express 20, 22344 (2012).
[CrossRef]

K. Gurton, M. A. Felton, R. Mack, C. Farlow, L. Pezzaniti, M. W. Kudenov, and D. LeMaster, Proc. SPIE 7672, 767205 (2010).
[CrossRef]

M. Felton, K. Gurton, and L. Pezzaniti, Opt. Express18, 15704 (2010).

Sandus, O.

Scott Tyo, J.

Shaw, J. A.

Siegel, R.

R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (McGraw-Hill, 1981).

Solomon, J. E.

Videen, G.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1959).

Appl. Opt.

Opt. Express

Opt. Lett.

Proc. SPIE

K. Gurton, M. A. Felton, R. Mack, C. Farlow, L. Pezzaniti, M. W. Kudenov, and D. LeMaster, Proc. SPIE 7672, 767205 (2010).
[CrossRef]

Other

P. P. Feofilov, The Physical Basis of Polarized Emission (Consultants Bureau, 1961).

R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (McGraw-Hill, 1981).

M. Born and E. Wolf, Principles of Optics (Pergamon, 1959).

M. Felton, K. Gurton, and L. Pezzaniti, Opt. Express18, 15704 (2010).

Supplementary Material (1)

» Media 1: AVI (58191 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Conventional long-wave-infrared (LWIR) thermal image (gray scale) in which the facial features lack the detail necessary for robust human identification. (b) The same image except the polarimetric information has been extracted and used to generate a “degree-of-linear-polarization” (DoLP) image as described by Eq. (6).

Fig. 2.
Fig. 2.

Typical set of Stokes imagery recorded by a spinning achromatic retarder (SAR) LWIR polarimetric sensor. (Top left, rotating clockwise) S 0 , S 1 (normalize), DoLP, and the S 2 (normalized) polarimetric images (shown with a false color pallet) of a human subject recorded outside under clear sky conditions in which the ambient radiant levels were considered low, i.e., less than 2.0 W / ( m 2 sr μm ) .

Fig. 3.
Fig. 3.

Typical ghosting effect often seen in conventional LWIR thermal imagery (left). Also shown is the corresponding LWIR DoLP polarimetric image (right) in which detailed facial features are more apparent.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S 0 = I ( 0 ) + I ( 90 ) ( w / sr cm 2 ) ,
S 1 = I ( 0 ) I ( 90 ) ( w / sr cm 2 ) ,
S 2 = I ( + 45 ) I ( 45 ) ( w / sr cm 2 ) ,
S 3 = I ( R ) I ( L ) ( w / sr cm 2 ) ,
DoP = S 1 2 + S 2 2 + S 3 2 S 0 ,
DoLP = S 1 2 + S 2 2 S 0 .

Metrics