Abstract

The phenomenon of vector photochromism was observed in some high-efficient polarization-sensitive materials depending on the radiant exposure of the inducing linearly polarized actinic light. The phenomenon has the purely vector nature because the absorption of the irradiated and unirradiated areas of the material is practically identical when we use unpolarized probing light. However, an essential change in the absorption spectrum was observed under probing the sample by linearly polarized nonactinic light when it passes through an analyzer, and this change depends on the value of radiant exposure. The kinetics of the photoanisotropy induced by linearly polarized actinic light at 457 nm was studied in case of wavelengths of 532 and 635 nm of the probing beam. The noticeable difference in absorbance was observed with increase in radiant exposure from 60J/cm2 up to 250J/cm2 for the used wavelengths of the probing beam. The experimental results obtained in polarization-sensitive material based on the ammonium salt of the azodye Mordant pure yellow in a gelatin matrix are presented. The dependence of the effective anisotropy on the material thickness has been investigated. The mechanism of the phenomenon is discussed. The observed effect can be used for creating dynamic polarization spectral filters controlled by light and the spectrally selective dynamic polarization holographic gratings.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Dürr and H. Bouas-Lauren, eds., Photochromism: Molecules and Systems: Molecules and Systems (Elsevier, 2003).
  2. J. C. Crano and R. J. Guglielmetti, Organic Photochromic and Thermochromic Compounds (Springer, 1999).
  3. G. Such, R. A. Evans, and T. Davis, Macromolecules 39, 1391 (2006).
    [CrossRef]
  4. J. A. Delaire and K. Nakatani, Chem. Rev. 100, 1817 (2000).
    [CrossRef]
  5. Sh. Pu, T. Yang, B. Yao, Y. Wang, M. Lei, and J. Xu, Mater. Lett. 61, 855 (2007).
    [CrossRef]
  6. V. P. Shibaev, A. Yu. Bobrovsky, and N. I. Boiko, Prog. Polym. Sci. 28, 729 (2003).
    [CrossRef]
  7. A. S. Matharu, S. Jeeva, and P. S. Ramanujam, Chem. Soc. Rev. 36, 1868 (2007).
    [CrossRef]
  8. N. Menke, B. Yao, Y. Wang, and Y. Chen, J. At. Mol. Opt. Phys. 2011, 509507 (2011).
  9. N. Hampp, Chem. Rev. 100, 1755 (2000).
    [CrossRef]
  10. A. Balabanov, G. Kakauridze, Sh. Kakichashvili, A. Savitski, V. Shaverdova, and Ya. Shvaitser, Opt. Spectrosc. 67, 409 (1989).
  11. I. Chaganava, G. Kakauridze, B. Kilosanidze, and G. Datukishvili, Proc. SPIE 8126, 81265I (2011).
    [CrossRef]
  12. Sh. Kakichashvili, Polarization Holography (Nauka, 1989).
  13. I. Chaganava, G. Kakauridze, and B. Kilosanidze, Proc. SPIE 7957, 795714 (2011).
    [CrossRef]
  14. B. Kilosanidze, G. Kakauridze, and I. Chaganava, Appl. Opt. 48, 1861 (2009).
    [CrossRef]
  15. B. Kilosanidze, G. Kakauridze, I. Chaganava, and Yu. Mshvenieradze, Appl. Opt. 52, 1006 (2013).
    [CrossRef]
  16. M. Frocht, Photoelasticity (Wiley, 1941).
  17. B. Kilosanidze and G. Kakauridze, Proc. SPIE, 7358, 735809 (2009).
    [CrossRef]

2013 (1)

2011 (3)

N. Menke, B. Yao, Y. Wang, and Y. Chen, J. At. Mol. Opt. Phys. 2011, 509507 (2011).

I. Chaganava, G. Kakauridze, B. Kilosanidze, and G. Datukishvili, Proc. SPIE 8126, 81265I (2011).
[CrossRef]

I. Chaganava, G. Kakauridze, and B. Kilosanidze, Proc. SPIE 7957, 795714 (2011).
[CrossRef]

2009 (2)

B. Kilosanidze and G. Kakauridze, Proc. SPIE, 7358, 735809 (2009).
[CrossRef]

B. Kilosanidze, G. Kakauridze, and I. Chaganava, Appl. Opt. 48, 1861 (2009).
[CrossRef]

2007 (2)

Sh. Pu, T. Yang, B. Yao, Y. Wang, M. Lei, and J. Xu, Mater. Lett. 61, 855 (2007).
[CrossRef]

A. S. Matharu, S. Jeeva, and P. S. Ramanujam, Chem. Soc. Rev. 36, 1868 (2007).
[CrossRef]

2006 (1)

G. Such, R. A. Evans, and T. Davis, Macromolecules 39, 1391 (2006).
[CrossRef]

2003 (1)

V. P. Shibaev, A. Yu. Bobrovsky, and N. I. Boiko, Prog. Polym. Sci. 28, 729 (2003).
[CrossRef]

2000 (2)

J. A. Delaire and K. Nakatani, Chem. Rev. 100, 1817 (2000).
[CrossRef]

N. Hampp, Chem. Rev. 100, 1755 (2000).
[CrossRef]

1989 (1)

A. Balabanov, G. Kakauridze, Sh. Kakichashvili, A. Savitski, V. Shaverdova, and Ya. Shvaitser, Opt. Spectrosc. 67, 409 (1989).

Balabanov, A.

A. Balabanov, G. Kakauridze, Sh. Kakichashvili, A. Savitski, V. Shaverdova, and Ya. Shvaitser, Opt. Spectrosc. 67, 409 (1989).

Bobrovsky, A. Yu.

V. P. Shibaev, A. Yu. Bobrovsky, and N. I. Boiko, Prog. Polym. Sci. 28, 729 (2003).
[CrossRef]

Boiko, N. I.

V. P. Shibaev, A. Yu. Bobrovsky, and N. I. Boiko, Prog. Polym. Sci. 28, 729 (2003).
[CrossRef]

Chaganava, I.

B. Kilosanidze, G. Kakauridze, I. Chaganava, and Yu. Mshvenieradze, Appl. Opt. 52, 1006 (2013).
[CrossRef]

I. Chaganava, G. Kakauridze, and B. Kilosanidze, Proc. SPIE 7957, 795714 (2011).
[CrossRef]

I. Chaganava, G. Kakauridze, B. Kilosanidze, and G. Datukishvili, Proc. SPIE 8126, 81265I (2011).
[CrossRef]

B. Kilosanidze, G. Kakauridze, and I. Chaganava, Appl. Opt. 48, 1861 (2009).
[CrossRef]

Chen, Y.

N. Menke, B. Yao, Y. Wang, and Y. Chen, J. At. Mol. Opt. Phys. 2011, 509507 (2011).

Crano, J. C.

J. C. Crano and R. J. Guglielmetti, Organic Photochromic and Thermochromic Compounds (Springer, 1999).

Datukishvili, G.

I. Chaganava, G. Kakauridze, B. Kilosanidze, and G. Datukishvili, Proc. SPIE 8126, 81265I (2011).
[CrossRef]

Davis, T.

G. Such, R. A. Evans, and T. Davis, Macromolecules 39, 1391 (2006).
[CrossRef]

Delaire, J. A.

J. A. Delaire and K. Nakatani, Chem. Rev. 100, 1817 (2000).
[CrossRef]

Evans, R. A.

G. Such, R. A. Evans, and T. Davis, Macromolecules 39, 1391 (2006).
[CrossRef]

Frocht, M.

M. Frocht, Photoelasticity (Wiley, 1941).

Guglielmetti, R. J.

J. C. Crano and R. J. Guglielmetti, Organic Photochromic and Thermochromic Compounds (Springer, 1999).

Hampp, N.

N. Hampp, Chem. Rev. 100, 1755 (2000).
[CrossRef]

Jeeva, S.

A. S. Matharu, S. Jeeva, and P. S. Ramanujam, Chem. Soc. Rev. 36, 1868 (2007).
[CrossRef]

Kakauridze, G.

B. Kilosanidze, G. Kakauridze, I. Chaganava, and Yu. Mshvenieradze, Appl. Opt. 52, 1006 (2013).
[CrossRef]

I. Chaganava, G. Kakauridze, and B. Kilosanidze, Proc. SPIE 7957, 795714 (2011).
[CrossRef]

I. Chaganava, G. Kakauridze, B. Kilosanidze, and G. Datukishvili, Proc. SPIE 8126, 81265I (2011).
[CrossRef]

B. Kilosanidze, G. Kakauridze, and I. Chaganava, Appl. Opt. 48, 1861 (2009).
[CrossRef]

B. Kilosanidze and G. Kakauridze, Proc. SPIE, 7358, 735809 (2009).
[CrossRef]

A. Balabanov, G. Kakauridze, Sh. Kakichashvili, A. Savitski, V. Shaverdova, and Ya. Shvaitser, Opt. Spectrosc. 67, 409 (1989).

Kakichashvili, Sh.

A. Balabanov, G. Kakauridze, Sh. Kakichashvili, A. Savitski, V. Shaverdova, and Ya. Shvaitser, Opt. Spectrosc. 67, 409 (1989).

Sh. Kakichashvili, Polarization Holography (Nauka, 1989).

Kilosanidze, B.

B. Kilosanidze, G. Kakauridze, I. Chaganava, and Yu. Mshvenieradze, Appl. Opt. 52, 1006 (2013).
[CrossRef]

I. Chaganava, G. Kakauridze, and B. Kilosanidze, Proc. SPIE 7957, 795714 (2011).
[CrossRef]

I. Chaganava, G. Kakauridze, B. Kilosanidze, and G. Datukishvili, Proc. SPIE 8126, 81265I (2011).
[CrossRef]

B. Kilosanidze and G. Kakauridze, Proc. SPIE, 7358, 735809 (2009).
[CrossRef]

B. Kilosanidze, G. Kakauridze, and I. Chaganava, Appl. Opt. 48, 1861 (2009).
[CrossRef]

Lei, M.

Sh. Pu, T. Yang, B. Yao, Y. Wang, M. Lei, and J. Xu, Mater. Lett. 61, 855 (2007).
[CrossRef]

Matharu, A. S.

A. S. Matharu, S. Jeeva, and P. S. Ramanujam, Chem. Soc. Rev. 36, 1868 (2007).
[CrossRef]

Menke, N.

N. Menke, B. Yao, Y. Wang, and Y. Chen, J. At. Mol. Opt. Phys. 2011, 509507 (2011).

Mshvenieradze, Yu.

Nakatani, K.

J. A. Delaire and K. Nakatani, Chem. Rev. 100, 1817 (2000).
[CrossRef]

Pu, Sh.

Sh. Pu, T. Yang, B. Yao, Y. Wang, M. Lei, and J. Xu, Mater. Lett. 61, 855 (2007).
[CrossRef]

Ramanujam, P. S.

A. S. Matharu, S. Jeeva, and P. S. Ramanujam, Chem. Soc. Rev. 36, 1868 (2007).
[CrossRef]

Savitski, A.

A. Balabanov, G. Kakauridze, Sh. Kakichashvili, A. Savitski, V. Shaverdova, and Ya. Shvaitser, Opt. Spectrosc. 67, 409 (1989).

Shaverdova, V.

A. Balabanov, G. Kakauridze, Sh. Kakichashvili, A. Savitski, V. Shaverdova, and Ya. Shvaitser, Opt. Spectrosc. 67, 409 (1989).

Shibaev, V. P.

V. P. Shibaev, A. Yu. Bobrovsky, and N. I. Boiko, Prog. Polym. Sci. 28, 729 (2003).
[CrossRef]

Shvaitser, Ya.

A. Balabanov, G. Kakauridze, Sh. Kakichashvili, A. Savitski, V. Shaverdova, and Ya. Shvaitser, Opt. Spectrosc. 67, 409 (1989).

Such, G.

G. Such, R. A. Evans, and T. Davis, Macromolecules 39, 1391 (2006).
[CrossRef]

Wang, Y.

N. Menke, B. Yao, Y. Wang, and Y. Chen, J. At. Mol. Opt. Phys. 2011, 509507 (2011).

Sh. Pu, T. Yang, B. Yao, Y. Wang, M. Lei, and J. Xu, Mater. Lett. 61, 855 (2007).
[CrossRef]

Xu, J.

Sh. Pu, T. Yang, B. Yao, Y. Wang, M. Lei, and J. Xu, Mater. Lett. 61, 855 (2007).
[CrossRef]

Yang, T.

Sh. Pu, T. Yang, B. Yao, Y. Wang, M. Lei, and J. Xu, Mater. Lett. 61, 855 (2007).
[CrossRef]

Yao, B.

N. Menke, B. Yao, Y. Wang, and Y. Chen, J. At. Mol. Opt. Phys. 2011, 509507 (2011).

Sh. Pu, T. Yang, B. Yao, Y. Wang, M. Lei, and J. Xu, Mater. Lett. 61, 855 (2007).
[CrossRef]

Appl. Opt. (2)

Chem. Rev. (2)

J. A. Delaire and K. Nakatani, Chem. Rev. 100, 1817 (2000).
[CrossRef]

N. Hampp, Chem. Rev. 100, 1755 (2000).
[CrossRef]

Chem. Soc. Rev. (1)

A. S. Matharu, S. Jeeva, and P. S. Ramanujam, Chem. Soc. Rev. 36, 1868 (2007).
[CrossRef]

J. At. Mol. Opt. Phys. (1)

N. Menke, B. Yao, Y. Wang, and Y. Chen, J. At. Mol. Opt. Phys. 2011, 509507 (2011).

Macromolecules (1)

G. Such, R. A. Evans, and T. Davis, Macromolecules 39, 1391 (2006).
[CrossRef]

Mater. Lett. (1)

Sh. Pu, T. Yang, B. Yao, Y. Wang, M. Lei, and J. Xu, Mater. Lett. 61, 855 (2007).
[CrossRef]

Opt. Spectrosc. (1)

A. Balabanov, G. Kakauridze, Sh. Kakichashvili, A. Savitski, V. Shaverdova, and Ya. Shvaitser, Opt. Spectrosc. 67, 409 (1989).

Proc. SPIE (3)

I. Chaganava, G. Kakauridze, B. Kilosanidze, and G. Datukishvili, Proc. SPIE 8126, 81265I (2011).
[CrossRef]

B. Kilosanidze and G. Kakauridze, Proc. SPIE, 7358, 735809 (2009).
[CrossRef]

I. Chaganava, G. Kakauridze, and B. Kilosanidze, Proc. SPIE 7957, 795714 (2011).
[CrossRef]

Prog. Polym. Sci. (1)

V. P. Shibaev, A. Yu. Bobrovsky, and N. I. Boiko, Prog. Polym. Sci. 28, 729 (2003).
[CrossRef]

Other (4)

H. Dürr and H. Bouas-Lauren, eds., Photochromism: Molecules and Systems: Molecules and Systems (Elsevier, 2003).

J. C. Crano and R. J. Guglielmetti, Organic Photochromic and Thermochromic Compounds (Springer, 1999).

Sh. Kakichashvili, Polarization Holography (Nauka, 1989).

M. Frocht, Photoelasticity (Wiley, 1941).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup for the investigation of the kinetics of photoanisotropy.

Fig. 2.
Fig. 2.

Basic scheme for the synthesis of Mordant pure yellow ammonium salt (MPY-NH4).

Fig. 3.
Fig. 3.

Kinetics of photoanisotropy induction in the sample of the material based on MPY-NH4 for two wavelengths of the probing beam: (a) 635 nm and (b) 532 nm. Power density of the inducing beam (457 nm) about 1W/cm2; (c) a standard curve of the kinetics of photoanisotropy for most of the polarization-sensitive materials in case of probing beam at 635 nm.

Fig. 4.
Fig. 4.

Absorption spectra of the sample based on MPY-NH4 in case of (a) linearly polarized probing beam and different exposure from 0 to 250J/cm2; (b) linearly polarized probing beam and two values of exposure 60J/cm2 and 250J/cm2, for which the difference in absorbance is greatest; (c) nonpolarized probing beam. In (b) the areas with maximum different absorbance for wavelengths of about 532 and 620 nm are given by dotted lines.

Fig. 5.
Fig. 5.

Kinetic curves of the effective anisotropy depending on the material thickness (probing beam at 532 nm).

Fig. 6.
Fig. 6.

Patterns of diffraction of two left-hand circularly polarized light beams with wavelengths of 532 and 635 nm on the dynamic polarization-holographic grating of the “C” type with radiant exposure of the recording of (a) 100J/cm2 and (b) 400J/cm2. The diffracted beams are right-hand circularly polarized.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Aeff=12exp(2κdnτ¯)[ch(κdΔnτ)cos(κdΔn)],

Metrics