Abstract

We report on the lattice strain dependence of the nonlinear optical (NLO) parameters of strained Si nanoparticles (NPs), which are prepared in a controlled way by a mechanical ball milling process. X-ray diffraction analysis shows that the nature of strain is compressive and is primarily caused by milling-induced lattice dislocations, which is further supported by high-resolution transmission electron microscopy imaging. It is found that the nonlinear refractive index (n2) and nonlinear absorption coefficient (β) are strongly influenced by the associated lattice strain present in Si NPs. With the increase of lattice strain, the β gradually decreases while n2 increases slowly. The strain-dependent observed changes in the NLO parameters of Si NPs are found to be advantageous for application purpose, and it is explained on the basis of strain-induced modification in the electronic structure of the highest occupied molecular orbital and lowest unoccupied molecular orbital states of Si NPs. These results demonstrate the potential of strain-dependent enhancement of nonlinearities for silicon photonics applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
    [CrossRef]
  2. J. Leuthold, C. Koos, and W. Freude, Nat. Photonics 4, 535 (2010).
    [CrossRef]
  3. P. Koonath, D. R. Solli, and B. Jalali, Appl. Phys. Lett. 91, 061111 (2007).
    [CrossRef]
  4. K. Imakita, M. Ito, M. Fujii, and S. Hayashi, J. Appl. Phys. 105, 093531 (2009).
    [CrossRef]
  5. S. Minissale, S. Yerci, and L. D. Negro, Appl. Phys. Lett. 100, 021109 (2012).
    [CrossRef]
  6. S. Lettieri and P. Maddalena, J. Appl. Phys. 91, 5564 (2002).
    [CrossRef]
  7. A. Thean and J. P. Leburton, Appl. Phys. Lett. 79, 1030 (2001).
    [CrossRef]
  8. X.-H. Peng, S. Ganti, A. Alizadeh, P. Sharma, S. K. Kumar, and S. K. Nayak, Phys. Rev. B 74, 035339 (2006).
    [CrossRef]
  9. S. Dhara and P. K. Giri, Nanoscale Res. Lett. 6, 320 (2011).
    [CrossRef]
  10. C. Zhang, A. D. Sarkar, and R.-Q. Zhang, J. Phys. Chem. C 115, 23682 (2011).
    [CrossRef]
  11. X. Jiang, J. Zhao, and X. Jiang, J. Nanopart. Res. 14, 818 (2012).
    [CrossRef]
  12. A. J. Lu, R. Q. Zhang, and S. T. Lee, Appl. Phys. Lett. 91, 263107 (2007).
    [CrossRef]
  13. S. Dhara and P. K. Giri, J. Nanosci. Nanotechnol. 11, 9215 (2011).
    [CrossRef]
  14. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
    [CrossRef]
  15. G. K. Williamson and W. H. Hall, Acta Metall. 1, 22 (1953).
    [CrossRef]
  16. T. Ungar and A. Borbely, Appl. Phys. Lett. 69, 3173 (1996).
    [CrossRef]
  17. E. L. d. Oliveira, E. L. Albuquerque, J. S. d. Sousa, and G. A. Farias, Appl. Phys. Lett. 94, 103114 (2009).
    [CrossRef]
  18. A. D. Bristow, N. Rotenberg, and H. M. v. Driel, Appl. Phys. Lett. 90, 191104 (2007).
    [CrossRef]
  19. C. S. Lin, W. D. Cheng, J. Y. Wang, and R. Q. Zhang, Chem. Phys. Lett. 509, 124 (2011).
    [CrossRef]
  20. Anchala, S. P. Purohit, and K. C. Mathur, J. Appl. Phys. 110, 114320 (2011).
    [CrossRef]
  21. G. V. Prakash, M. Cazzaneli, Z. Gaburro, L. Pavesi, F. Lacona, G. Franzo, and F. Priolo, J. Appl. Phys. 91, 4607 (2002).
    [CrossRef]
  22. M. Ito, K. Imakita, M. Fujii, and S. Hayashi, J. Appl. Phys. 108, 063512 (2010).
    [CrossRef]
  23. R. Spano, N. Daldosso, M. Cazzanelli, L. Ferraioli, L. Tartara, J. Yu, V. Degiorgio, E. Jordana, J. M. Fedeli, and L. Pavesi, Opt. Express 17, 3941 (2009).
    [CrossRef]

2012 (2)

S. Minissale, S. Yerci, and L. D. Negro, Appl. Phys. Lett. 100, 021109 (2012).
[CrossRef]

X. Jiang, J. Zhao, and X. Jiang, J. Nanopart. Res. 14, 818 (2012).
[CrossRef]

2011 (5)

S. Dhara and P. K. Giri, J. Nanosci. Nanotechnol. 11, 9215 (2011).
[CrossRef]

S. Dhara and P. K. Giri, Nanoscale Res. Lett. 6, 320 (2011).
[CrossRef]

C. Zhang, A. D. Sarkar, and R.-Q. Zhang, J. Phys. Chem. C 115, 23682 (2011).
[CrossRef]

C. S. Lin, W. D. Cheng, J. Y. Wang, and R. Q. Zhang, Chem. Phys. Lett. 509, 124 (2011).
[CrossRef]

Anchala, S. P. Purohit, and K. C. Mathur, J. Appl. Phys. 110, 114320 (2011).
[CrossRef]

2010 (2)

M. Ito, K. Imakita, M. Fujii, and S. Hayashi, J. Appl. Phys. 108, 063512 (2010).
[CrossRef]

J. Leuthold, C. Koos, and W. Freude, Nat. Photonics 4, 535 (2010).
[CrossRef]

2009 (3)

K. Imakita, M. Ito, M. Fujii, and S. Hayashi, J. Appl. Phys. 105, 093531 (2009).
[CrossRef]

E. L. d. Oliveira, E. L. Albuquerque, J. S. d. Sousa, and G. A. Farias, Appl. Phys. Lett. 94, 103114 (2009).
[CrossRef]

R. Spano, N. Daldosso, M. Cazzanelli, L. Ferraioli, L. Tartara, J. Yu, V. Degiorgio, E. Jordana, J. M. Fedeli, and L. Pavesi, Opt. Express 17, 3941 (2009).
[CrossRef]

2007 (4)

A. D. Bristow, N. Rotenberg, and H. M. v. Driel, Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

A. J. Lu, R. Q. Zhang, and S. T. Lee, Appl. Phys. Lett. 91, 263107 (2007).
[CrossRef]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef]

P. Koonath, D. R. Solli, and B. Jalali, Appl. Phys. Lett. 91, 061111 (2007).
[CrossRef]

2006 (1)

X.-H. Peng, S. Ganti, A. Alizadeh, P. Sharma, S. K. Kumar, and S. K. Nayak, Phys. Rev. B 74, 035339 (2006).
[CrossRef]

2002 (2)

S. Lettieri and P. Maddalena, J. Appl. Phys. 91, 5564 (2002).
[CrossRef]

G. V. Prakash, M. Cazzaneli, Z. Gaburro, L. Pavesi, F. Lacona, G. Franzo, and F. Priolo, J. Appl. Phys. 91, 4607 (2002).
[CrossRef]

2001 (1)

A. Thean and J. P. Leburton, Appl. Phys. Lett. 79, 1030 (2001).
[CrossRef]

1996 (1)

T. Ungar and A. Borbely, Appl. Phys. Lett. 69, 3173 (1996).
[CrossRef]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

1953 (1)

G. K. Williamson and W. H. Hall, Acta Metall. 1, 22 (1953).
[CrossRef]

Albuquerque, E. L.

E. L. d. Oliveira, E. L. Albuquerque, J. S. d. Sousa, and G. A. Farias, Appl. Phys. Lett. 94, 103114 (2009).
[CrossRef]

Alizadeh, A.

X.-H. Peng, S. Ganti, A. Alizadeh, P. Sharma, S. K. Kumar, and S. K. Nayak, Phys. Rev. B 74, 035339 (2006).
[CrossRef]

Anchala,

Anchala, S. P. Purohit, and K. C. Mathur, J. Appl. Phys. 110, 114320 (2011).
[CrossRef]

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef]

Borbely, A.

T. Ungar and A. Borbely, Appl. Phys. Lett. 69, 3173 (1996).
[CrossRef]

Bristow, A. D.

A. D. Bristow, N. Rotenberg, and H. M. v. Driel, Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

Cazzaneli, M.

G. V. Prakash, M. Cazzaneli, Z. Gaburro, L. Pavesi, F. Lacona, G. Franzo, and F. Priolo, J. Appl. Phys. 91, 4607 (2002).
[CrossRef]

Cazzanelli, M.

Cheng, W. D.

C. S. Lin, W. D. Cheng, J. Y. Wang, and R. Q. Zhang, Chem. Phys. Lett. 509, 124 (2011).
[CrossRef]

Daldosso, N.

Degiorgio, V.

Dhara, S.

S. Dhara and P. K. Giri, J. Nanosci. Nanotechnol. 11, 9215 (2011).
[CrossRef]

S. Dhara and P. K. Giri, Nanoscale Res. Lett. 6, 320 (2011).
[CrossRef]

Driel, H. M. v.

A. D. Bristow, N. Rotenberg, and H. M. v. Driel, Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

Farias, G. A.

E. L. d. Oliveira, E. L. Albuquerque, J. S. d. Sousa, and G. A. Farias, Appl. Phys. Lett. 94, 103114 (2009).
[CrossRef]

Fedeli, J. M.

Ferraioli, L.

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef]

Franzo, G.

G. V. Prakash, M. Cazzaneli, Z. Gaburro, L. Pavesi, F. Lacona, G. Franzo, and F. Priolo, J. Appl. Phys. 91, 4607 (2002).
[CrossRef]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef]

Freude, W.

J. Leuthold, C. Koos, and W. Freude, Nat. Photonics 4, 535 (2010).
[CrossRef]

Fujii, M.

M. Ito, K. Imakita, M. Fujii, and S. Hayashi, J. Appl. Phys. 108, 063512 (2010).
[CrossRef]

K. Imakita, M. Ito, M. Fujii, and S. Hayashi, J. Appl. Phys. 105, 093531 (2009).
[CrossRef]

Gaburro, Z.

G. V. Prakash, M. Cazzaneli, Z. Gaburro, L. Pavesi, F. Lacona, G. Franzo, and F. Priolo, J. Appl. Phys. 91, 4607 (2002).
[CrossRef]

Ganti, S.

X.-H. Peng, S. Ganti, A. Alizadeh, P. Sharma, S. K. Kumar, and S. K. Nayak, Phys. Rev. B 74, 035339 (2006).
[CrossRef]

Giri, P. K.

S. Dhara and P. K. Giri, Nanoscale Res. Lett. 6, 320 (2011).
[CrossRef]

S. Dhara and P. K. Giri, J. Nanosci. Nanotechnol. 11, 9215 (2011).
[CrossRef]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Hall, W. H.

G. K. Williamson and W. H. Hall, Acta Metall. 1, 22 (1953).
[CrossRef]

Hayashi, S.

M. Ito, K. Imakita, M. Fujii, and S. Hayashi, J. Appl. Phys. 108, 063512 (2010).
[CrossRef]

K. Imakita, M. Ito, M. Fujii, and S. Hayashi, J. Appl. Phys. 105, 093531 (2009).
[CrossRef]

Imakita, K.

M. Ito, K. Imakita, M. Fujii, and S. Hayashi, J. Appl. Phys. 108, 063512 (2010).
[CrossRef]

K. Imakita, M. Ito, M. Fujii, and S. Hayashi, J. Appl. Phys. 105, 093531 (2009).
[CrossRef]

Ito, M.

M. Ito, K. Imakita, M. Fujii, and S. Hayashi, J. Appl. Phys. 108, 063512 (2010).
[CrossRef]

K. Imakita, M. Ito, M. Fujii, and S. Hayashi, J. Appl. Phys. 105, 093531 (2009).
[CrossRef]

Jalali, B.

P. Koonath, D. R. Solli, and B. Jalali, Appl. Phys. Lett. 91, 061111 (2007).
[CrossRef]

Jiang, X.

X. Jiang, J. Zhao, and X. Jiang, J. Nanopart. Res. 14, 818 (2012).
[CrossRef]

X. Jiang, J. Zhao, and X. Jiang, J. Nanopart. Res. 14, 818 (2012).
[CrossRef]

Jordana, E.

Koonath, P.

P. Koonath, D. R. Solli, and B. Jalali, Appl. Phys. Lett. 91, 061111 (2007).
[CrossRef]

Koos, C.

J. Leuthold, C. Koos, and W. Freude, Nat. Photonics 4, 535 (2010).
[CrossRef]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef]

Kumar, S. K.

X.-H. Peng, S. Ganti, A. Alizadeh, P. Sharma, S. K. Kumar, and S. K. Nayak, Phys. Rev. B 74, 035339 (2006).
[CrossRef]

Lacona, F.

G. V. Prakash, M. Cazzaneli, Z. Gaburro, L. Pavesi, F. Lacona, G. Franzo, and F. Priolo, J. Appl. Phys. 91, 4607 (2002).
[CrossRef]

Leburton, J. P.

A. Thean and J. P. Leburton, Appl. Phys. Lett. 79, 1030 (2001).
[CrossRef]

Lee, S. T.

A. J. Lu, R. Q. Zhang, and S. T. Lee, Appl. Phys. Lett. 91, 263107 (2007).
[CrossRef]

Lettieri, S.

S. Lettieri and P. Maddalena, J. Appl. Phys. 91, 5564 (2002).
[CrossRef]

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, Nat. Photonics 4, 535 (2010).
[CrossRef]

Lin, C. S.

C. S. Lin, W. D. Cheng, J. Y. Wang, and R. Q. Zhang, Chem. Phys. Lett. 509, 124 (2011).
[CrossRef]

Lu, A. J.

A. J. Lu, R. Q. Zhang, and S. T. Lee, Appl. Phys. Lett. 91, 263107 (2007).
[CrossRef]

Maddalena, P.

S. Lettieri and P. Maddalena, J. Appl. Phys. 91, 5564 (2002).
[CrossRef]

Mathur, K. C.

Anchala, S. P. Purohit, and K. C. Mathur, J. Appl. Phys. 110, 114320 (2011).
[CrossRef]

Minissale, S.

S. Minissale, S. Yerci, and L. D. Negro, Appl. Phys. Lett. 100, 021109 (2012).
[CrossRef]

Nayak, S. K.

X.-H. Peng, S. Ganti, A. Alizadeh, P. Sharma, S. K. Kumar, and S. K. Nayak, Phys. Rev. B 74, 035339 (2006).
[CrossRef]

Negro, L. D.

S. Minissale, S. Yerci, and L. D. Negro, Appl. Phys. Lett. 100, 021109 (2012).
[CrossRef]

Oliveira, E. L. d.

E. L. d. Oliveira, E. L. Albuquerque, J. S. d. Sousa, and G. A. Farias, Appl. Phys. Lett. 94, 103114 (2009).
[CrossRef]

Pavesi, L.

R. Spano, N. Daldosso, M. Cazzanelli, L. Ferraioli, L. Tartara, J. Yu, V. Degiorgio, E. Jordana, J. M. Fedeli, and L. Pavesi, Opt. Express 17, 3941 (2009).
[CrossRef]

G. V. Prakash, M. Cazzaneli, Z. Gaburro, L. Pavesi, F. Lacona, G. Franzo, and F. Priolo, J. Appl. Phys. 91, 4607 (2002).
[CrossRef]

Peng, X.-H.

X.-H. Peng, S. Ganti, A. Alizadeh, P. Sharma, S. K. Kumar, and S. K. Nayak, Phys. Rev. B 74, 035339 (2006).
[CrossRef]

Prakash, G. V.

G. V. Prakash, M. Cazzaneli, Z. Gaburro, L. Pavesi, F. Lacona, G. Franzo, and F. Priolo, J. Appl. Phys. 91, 4607 (2002).
[CrossRef]

Priolo, F.

G. V. Prakash, M. Cazzaneli, Z. Gaburro, L. Pavesi, F. Lacona, G. Franzo, and F. Priolo, J. Appl. Phys. 91, 4607 (2002).
[CrossRef]

Purohit, S. P.

Anchala, S. P. Purohit, and K. C. Mathur, J. Appl. Phys. 110, 114320 (2011).
[CrossRef]

Rotenberg, N.

A. D. Bristow, N. Rotenberg, and H. M. v. Driel, Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Sarkar, A. D.

C. Zhang, A. D. Sarkar, and R.-Q. Zhang, J. Phys. Chem. C 115, 23682 (2011).
[CrossRef]

Sharma, P.

X.-H. Peng, S. Ganti, A. Alizadeh, P. Sharma, S. K. Kumar, and S. K. Nayak, Phys. Rev. B 74, 035339 (2006).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Solli, D. R.

P. Koonath, D. R. Solli, and B. Jalali, Appl. Phys. Lett. 91, 061111 (2007).
[CrossRef]

Sousa, J. S. d.

E. L. d. Oliveira, E. L. Albuquerque, J. S. d. Sousa, and G. A. Farias, Appl. Phys. Lett. 94, 103114 (2009).
[CrossRef]

Spano, R.

Stryland, E. W. V.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Tartara, L.

Thean, A.

A. Thean and J. P. Leburton, Appl. Phys. Lett. 79, 1030 (2001).
[CrossRef]

Ungar, T.

T. Ungar and A. Borbely, Appl. Phys. Lett. 69, 3173 (1996).
[CrossRef]

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef]

Wang, J. Y.

C. S. Lin, W. D. Cheng, J. Y. Wang, and R. Q. Zhang, Chem. Phys. Lett. 509, 124 (2011).
[CrossRef]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Williamson, G. K.

G. K. Williamson and W. H. Hall, Acta Metall. 1, 22 (1953).
[CrossRef]

Yerci, S.

S. Minissale, S. Yerci, and L. D. Negro, Appl. Phys. Lett. 100, 021109 (2012).
[CrossRef]

Yu, J.

Zhang, C.

C. Zhang, A. D. Sarkar, and R.-Q. Zhang, J. Phys. Chem. C 115, 23682 (2011).
[CrossRef]

Zhang, R. Q.

C. S. Lin, W. D. Cheng, J. Y. Wang, and R. Q. Zhang, Chem. Phys. Lett. 509, 124 (2011).
[CrossRef]

A. J. Lu, R. Q. Zhang, and S. T. Lee, Appl. Phys. Lett. 91, 263107 (2007).
[CrossRef]

Zhang, R.-Q.

C. Zhang, A. D. Sarkar, and R.-Q. Zhang, J. Phys. Chem. C 115, 23682 (2011).
[CrossRef]

Zhao, J.

X. Jiang, J. Zhao, and X. Jiang, J. Nanopart. Res. 14, 818 (2012).
[CrossRef]

Acta Metall. (1)

G. K. Williamson and W. H. Hall, Acta Metall. 1, 22 (1953).
[CrossRef]

Appl. Phys. Lett. (7)

T. Ungar and A. Borbely, Appl. Phys. Lett. 69, 3173 (1996).
[CrossRef]

E. L. d. Oliveira, E. L. Albuquerque, J. S. d. Sousa, and G. A. Farias, Appl. Phys. Lett. 94, 103114 (2009).
[CrossRef]

A. D. Bristow, N. Rotenberg, and H. M. v. Driel, Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

P. Koonath, D. R. Solli, and B. Jalali, Appl. Phys. Lett. 91, 061111 (2007).
[CrossRef]

S. Minissale, S. Yerci, and L. D. Negro, Appl. Phys. Lett. 100, 021109 (2012).
[CrossRef]

A. Thean and J. P. Leburton, Appl. Phys. Lett. 79, 1030 (2001).
[CrossRef]

A. J. Lu, R. Q. Zhang, and S. T. Lee, Appl. Phys. Lett. 91, 263107 (2007).
[CrossRef]

Chem. Phys. Lett. (1)

C. S. Lin, W. D. Cheng, J. Y. Wang, and R. Q. Zhang, Chem. Phys. Lett. 509, 124 (2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

J. Appl. Phys. (5)

Anchala, S. P. Purohit, and K. C. Mathur, J. Appl. Phys. 110, 114320 (2011).
[CrossRef]

G. V. Prakash, M. Cazzaneli, Z. Gaburro, L. Pavesi, F. Lacona, G. Franzo, and F. Priolo, J. Appl. Phys. 91, 4607 (2002).
[CrossRef]

M. Ito, K. Imakita, M. Fujii, and S. Hayashi, J. Appl. Phys. 108, 063512 (2010).
[CrossRef]

S. Lettieri and P. Maddalena, J. Appl. Phys. 91, 5564 (2002).
[CrossRef]

K. Imakita, M. Ito, M. Fujii, and S. Hayashi, J. Appl. Phys. 105, 093531 (2009).
[CrossRef]

J. Nanopart. Res. (1)

X. Jiang, J. Zhao, and X. Jiang, J. Nanopart. Res. 14, 818 (2012).
[CrossRef]

J. Nanosci. Nanotechnol. (1)

S. Dhara and P. K. Giri, J. Nanosci. Nanotechnol. 11, 9215 (2011).
[CrossRef]

J. Phys. Chem. C (1)

C. Zhang, A. D. Sarkar, and R.-Q. Zhang, J. Phys. Chem. C 115, 23682 (2011).
[CrossRef]

Nanoscale Res. Lett. (1)

S. Dhara and P. K. Giri, Nanoscale Res. Lett. 6, 320 (2011).
[CrossRef]

Nat. Photonics (1)

J. Leuthold, C. Koos, and W. Freude, Nat. Photonics 4, 535 (2010).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (1)

X.-H. Peng, S. Ganti, A. Alizadeh, P. Sharma, S. K. Kumar, and S. K. Nayak, Phys. Rev. B 74, 035339 (2006).
[CrossRef]

Science (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Evolution of lattice strain and dislocation density with the milling time for Si NPs. Inset (top): XRD pattern of Si-10 NPs. Inset (bottom) graph shows the reduction of Si NPs size with milling time.

Fig. 2.
Fig. 2.

(a) HRTEM lattice image of Si-10 nanoparticle showing distorted and shrunk lattice (regions marked with rectangle) due to the presence of compressive lattice strain. (b) HRTEM lattice image of Si-10 after annealing showing improvement in the lattice distortion by release of strain.

Fig. 3.
Fig. 3.

(a) Linear absorption spectra of Si NPs with different sizes and strain. Z-scan measurement data in (b) open aperture (OA) and (c) ratio of closed aperture (CA) to OA configurations for the Si NPs (Si-10). The solid lines are theoretical fitting using Eqs. (1) and (2), respectively.

Fig. 4.
Fig. 4.

Lattice strain dependence of (a) β and (b) n2 for the Si NPs measured at a peak power of 12.5GW/cm2. Red color data points are for the Si-10 after thermal annealing. (c) and (d) Nonlinear parameters β and n2 as a function of incident peak laser power for the Si NPs (Si-20).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

TOA(z)=1βI0L1+(zz0)2,
TCA(z)TOA(z)=1+4Δφ(zz0)[1+(zz0)2][9+(zz0)2],
n2=λαΔφ2πI0(1eαL),

Metrics