Abstract

This work proposes a new type of resonator: a single-mode half-disk resonator. Half of the resonator is solid, allowing large electrical or mechanical contacts, and a single-mode operation can be retained. A systematic design method is demonstrated and analyzed. For a 3 μm radius, the simulation predicts an internal Q-factor as high as 2.4×105, and a loaded Q-factor of 9000 is measured in experiments, comparable even with uncontacted microrings of bigger radii. The large contacts will improve the performance of a wide range of active devices. We present the contact resistance of a vertical PN junction modulator based on this structure, which can be reduced to nearly an order of magnitude, enabling a much faster modulation speed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, Nat. Photonics 4, 518 (2010).
    [CrossRef]
  2. Z. Zhou, Z. Tu, B. Yin, W. Tan, L. Yu, H. Yi, and X. Wang, Chin. Opt. Lett. 11, 12501 (2013).
  3. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, Opt. Express 19, 21989 (2011).
    [CrossRef]
  4. M. R. Watts, Opt. Lett. 35, 3231 (2010).
    [CrossRef]
  5. A. Biberman, E. Timurdogan, W. A. Zortman, D. C. Trotter, and M. R. Watts, Opt. Express 20, 29223 (2012).
    [CrossRef]
  6. D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for petabit optical interconnects,” Nanophotonics, doi: 10.1515/nanoph-2013-0021.
    [CrossRef]
  7. J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, Thin Solid Films 520, 3354 (2012).
    [CrossRef]
  8. D. A. B. Miller, Opt. Express 20, A293 (2012).
    [CrossRef]
  9. M. Fujita and T. Baba, Appl. Phys. Lett. 80, 2051 (2002).
    [CrossRef]
  10. S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, Appl. Phys. Lett. 74, 176 (1999).
    [CrossRef]
  11. R. L. Levien and C. Adviser-Sequin, From Spiral to Spline: Optimal Techniques in Interactive Curve Design (University of California, 2009).
  12. T. Chen, H. Lee, J. Li, and K. J. Vahala, Opt. Express 20, 22819 (2012).
    [CrossRef]
  13. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, Opt. Express 15, 430 (2007).
    [CrossRef]
  14. Q. Xu, V. R. Almeida, and M. Lipson, Opt. Lett. 30, 2733 (2005).
    [CrossRef]
  15. Q. Xu, D. Fattal, and R. G. Beausoleil, Opt. Express 16, 4309 (2008).
    [CrossRef]

2013 (1)

Z. Zhou, Z. Tu, B. Yin, W. Tan, L. Yu, H. Yi, and X. Wang, Chin. Opt. Lett. 11, 12501 (2013).

2012 (4)

2011 (1)

2010 (2)

M. R. Watts, Opt. Lett. 35, 3231 (2010).
[CrossRef]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, Nat. Photonics 4, 518 (2010).
[CrossRef]

2008 (1)

2007 (1)

2005 (1)

2002 (1)

M. Fujita and T. Baba, Appl. Phys. Lett. 80, 2051 (2002).
[CrossRef]

1999 (1)

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, Appl. Phys. Lett. 74, 176 (1999).
[CrossRef]

Adviser-Sequin, C.

R. L. Levien and C. Adviser-Sequin, From Spiral to Spline: Optimal Techniques in Interactive Curve Design (University of California, 2009).

Almeida, V. R.

Baba, T.

M. Fujita and T. Baba, Appl. Phys. Lett. 80, 2051 (2002).
[CrossRef]

Backes, S. A.

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, Appl. Phys. Lett. 74, 176 (1999).
[CrossRef]

Baumberg, J. J.

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, Appl. Phys. Lett. 74, 176 (1999).
[CrossRef]

Beausoleil, R. G.

Bessette, J. T.

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, Thin Solid Films 520, 3354 (2012).
[CrossRef]

Biberman, A.

Bowers, J. E.

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for petabit optical interconnects,” Nanophotonics, doi: 10.1515/nanoph-2013-0021.
[CrossRef]

Cai, Y.

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, Thin Solid Films 520, 3354 (2012).
[CrossRef]

Camacho-Aguilera, R.

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, Thin Solid Films 520, 3354 (2012).
[CrossRef]

Chen, T.

Cleaver, J. R. A.

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, Appl. Phys. Lett. 74, 176 (1999).
[CrossRef]

Dai, D.

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for petabit optical interconnects,” Nanophotonics, doi: 10.1515/nanoph-2013-0021.
[CrossRef]

Fattal, D.

Fujita, M.

M. Fujita and T. Baba, Appl. Phys. Lett. 80, 2051 (2002).
[CrossRef]

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, Nat. Photonics 4, 518 (2010).
[CrossRef]

Heberle, A. P.

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, Appl. Phys. Lett. 74, 176 (1999).
[CrossRef]

Kimerling, L. C.

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, Thin Solid Films 520, 3354 (2012).
[CrossRef]

Köhler, K.

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, Appl. Phys. Lett. 74, 176 (1999).
[CrossRef]

Lee, H.

Lentine, A. L.

Levien, R. L.

R. L. Levien and C. Adviser-Sequin, From Spiral to Spline: Optimal Techniques in Interactive Curve Design (University of California, 2009).

Li, J.

Lipson, M.

Liu, J.

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, Thin Solid Films 520, 3354 (2012).
[CrossRef]

Manipatruni, S.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, Nat. Photonics 4, 518 (2010).
[CrossRef]

Michel, J.

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, Thin Solid Films 520, 3354 (2012).
[CrossRef]

Miller, D. A. B.

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, Nat. Photonics 4, 518 (2010).
[CrossRef]

Schmidt, B.

Shakya, J.

Sun, X.

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, Thin Solid Films 520, 3354 (2012).
[CrossRef]

Tan, W.

Z. Zhou, Z. Tu, B. Yin, W. Tan, L. Yu, H. Yi, and X. Wang, Chin. Opt. Lett. 11, 12501 (2013).

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, Nat. Photonics 4, 518 (2010).
[CrossRef]

Timurdogan, E.

Trotter, D. C.

Tu, Z.

Z. Zhou, Z. Tu, B. Yin, W. Tan, L. Yu, H. Yi, and X. Wang, Chin. Opt. Lett. 11, 12501 (2013).

Vahala, K. J.

Wang, X.

Z. Zhou, Z. Tu, B. Yin, W. Tan, L. Yu, H. Yi, and X. Wang, Chin. Opt. Lett. 11, 12501 (2013).

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, Thin Solid Films 520, 3354 (2012).
[CrossRef]

Watts, M. R.

Xu, Q.

Yi, H.

Z. Zhou, Z. Tu, B. Yin, W. Tan, L. Yu, H. Yi, and X. Wang, Chin. Opt. Lett. 11, 12501 (2013).

Yin, B.

Z. Zhou, Z. Tu, B. Yin, W. Tan, L. Yu, H. Yi, and X. Wang, Chin. Opt. Lett. 11, 12501 (2013).

Young, R. W.

Yu, L.

Z. Zhou, Z. Tu, B. Yin, W. Tan, L. Yu, H. Yi, and X. Wang, Chin. Opt. Lett. 11, 12501 (2013).

Zhou, Z.

Z. Zhou, Z. Tu, B. Yin, W. Tan, L. Yu, H. Yi, and X. Wang, Chin. Opt. Lett. 11, 12501 (2013).

Zortman, W. A.

Appl. Phys. Lett. (2)

M. Fujita and T. Baba, Appl. Phys. Lett. 80, 2051 (2002).
[CrossRef]

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, Appl. Phys. Lett. 74, 176 (1999).
[CrossRef]

Chin. Opt. Lett. (1)

Z. Zhou, Z. Tu, B. Yin, W. Tan, L. Yu, H. Yi, and X. Wang, Chin. Opt. Lett. 11, 12501 (2013).

Nat. Photonics (1)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, Nat. Photonics 4, 518 (2010).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Thin Solid Films (1)

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, Thin Solid Films 520, 3354 (2012).
[CrossRef]

Other (2)

R. L. Levien and C. Adviser-Sequin, From Spiral to Spline: Optimal Techniques in Interactive Curve Design (University of California, 2009).

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for petabit optical interconnects,” Nanophotonics, doi: 10.1515/nanoph-2013-0021.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic of a single-mode HDR. Light inputs from the bus waveguide and evanescently couples to the HDR coupling region at the bottom. The gray and white areas represent silicon and SiO2, respectively. (b) Demonstration of 90° transition curve design, R11=1.3μm, R2=2μm, showing a smooth joint between contact area and transition area.

Fig. 2.
Fig. 2.

(a) Proof of concept: field distribution of the 2D-Finite element method (FEM) simulation of the HDR with 180° contact. Only a fundamental mode is supported and no field distribution occurs in the center. (b) 2D-FEM optimization of the internal Q-factor versus different R11, R10=1.6μm, R2=2μm. A high internal Q-factor of 105 can be maintained despite large contact.

Fig. 3.
Fig. 3.

(a) SEM image of single-mode HDR. (b) Magnified view of transition area marked in (a). The fabricated parameter deviates from the optimal value. Finer fabrication will further improve its performance.

Fig. 4.
Fig. 4.

Optical transmission spectrum. The lack of multimode resonance peaks confirm single-mode operation. The loaded Q-factor of 9000 is measured at a 1512 nm peak. The inset shows a 3D-FEM simulation of intrinsic (right) and doped (left) HDR transmission spectra according to parameters measured in SEM photographs. The waveguide is 370 nm wide and the coupling gap is 249 nm. Loaded Q-factors of 10,132 and 6090 are obtained for intrinsic and doped HDR, respectively. Surface roughness is not considered in the simulation.

Fig. 5.
Fig. 5.

Schematic of the vertical PN junction modulator based on the HDR. A large contact area greatly reduces resistance, thus increasing the RC-limited bandwidth.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

κ1(s1)=κ2(s1),θ1(s1)=θ2(s1),dκ1ds(s1)=dκ2ds(s1)=0,
κ(s)=1R10+a1s+a2s2+a3s3,θ(s)=π2+1R10s+a12s2+a23s3+a34s4.
xi=xi1+cos[θ((i1)ds)]ds,yi=yi1+sin[θ((i1)ds)]ds.
θ(s1)=π2+α,dκds(s1)=0,xn=R11cosα,yn=R11sinα,
C(V)=Aεrε0qNAND2(NA+ND)(VϕB),
τ=λQ2πcf3dB2=1(2πτ)2+(2πRC)2.

Metrics