Abstract

We present a modified THz electro-optic sampling method to combine the advantages of its two traditional counterparts at near 0° and 45° optical biases: excellent ability to cancel the background noises, high optical modulation, and large dynamical range. The first advantage results from the method’s symmetrical layout to get dynamical noise cancellation. By setting the static birefringent phases of the two balanced beams with a pair of opposite numbers, our setup can record THz waveforms without distortion with its maximal modulation depth, thus optimal signal-to-noise ratio (SNR). The setting also releases the linearity of the measured signal from the static birefringence, thus enlarging greatly the linear dynamical range. For a given THz field, the recorded SNR with our setup, without a lock-in, is more than 10 times higher than that with the “crossed and balanced” design [IEEE Trans. Microwave Theory Tech. 47, 2644 (1999)].

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Calabrese, A. M. Stingel, and P. B. Petersen, Opt. Lett. 37, 2265 (2012).
    [CrossRef]
  2. J. Wu, Y. Zhang, T. Jia, W. Xu, and P. Wu, Appl. Phys. Lett. 99, 161113 (2011).
    [CrossRef]
  3. T. Löffler, T. Bauer, and H. G. Roskos, Opt. Express 9, 616 (2001).
    [CrossRef]
  4. A. Mashaghi, S. Mashaghi, I. Reviakine, and R. M. A. Heeren, Chem. Soc. Rev. 43, 887 (2014).
    [CrossRef]
  5. E. Castro-Camus, M. Palomar, and A. A. Covarrubias, Sci. Rep. 3, 02910 (2013).
    [CrossRef]
  6. Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 71, 1285 (1997).
    [CrossRef]
  7. Z. Jiang, F. G. Sun, Q. Chen, and X. Zhang, Appl. Phys. Lett. 74, 1191 (1999).
    [CrossRef]
  8. S. Xu and H. Cai, Chin. Phys. Lett. 25, 152 (2008).
    [CrossRef]
  9. X. Wang, Y. Cui, W. Sun, J. Ye, and Y. Zhang, Opt. Commun. 283, 4626 (2010).
    [CrossRef]
  10. T. Hattori, K. Ohta, R. Rungsawang, and K. Tukamoto, J. Phys. D 37, 770 (2004).
    [CrossRef]
  11. S. Schecklman, L. M. Zurk, S. Henry, and G. P. Kniffin, J. Appl. Phys. 109, 094902 (2011).
    [CrossRef]
  12. Y. Minami, Y. Hayashi, J. Takeda, and I. Katayama, Appl. Phys. Lett. 103, 051103 (2013).
    [CrossRef]
  13. N. H. Matlis, G. R. Plateau, J. van Tilborg, and W. P. Leemans, J. Opt. Soc. Am. B 28, 23 (2011).
    [CrossRef]
  14. Z. Jiang and X. Zhang, IEEE Trans. Microwave Theory Tech. 47, 2644 (1999).
    [CrossRef]

2014

A. Mashaghi, S. Mashaghi, I. Reviakine, and R. M. A. Heeren, Chem. Soc. Rev. 43, 887 (2014).
[CrossRef]

2013

E. Castro-Camus, M. Palomar, and A. A. Covarrubias, Sci. Rep. 3, 02910 (2013).
[CrossRef]

Y. Minami, Y. Hayashi, J. Takeda, and I. Katayama, Appl. Phys. Lett. 103, 051103 (2013).
[CrossRef]

2012

2011

N. H. Matlis, G. R. Plateau, J. van Tilborg, and W. P. Leemans, J. Opt. Soc. Am. B 28, 23 (2011).
[CrossRef]

S. Schecklman, L. M. Zurk, S. Henry, and G. P. Kniffin, J. Appl. Phys. 109, 094902 (2011).
[CrossRef]

J. Wu, Y. Zhang, T. Jia, W. Xu, and P. Wu, Appl. Phys. Lett. 99, 161113 (2011).
[CrossRef]

2010

X. Wang, Y. Cui, W. Sun, J. Ye, and Y. Zhang, Opt. Commun. 283, 4626 (2010).
[CrossRef]

2008

S. Xu and H. Cai, Chin. Phys. Lett. 25, 152 (2008).
[CrossRef]

2004

T. Hattori, K. Ohta, R. Rungsawang, and K. Tukamoto, J. Phys. D 37, 770 (2004).
[CrossRef]

2001

1999

Z. Jiang and X. Zhang, IEEE Trans. Microwave Theory Tech. 47, 2644 (1999).
[CrossRef]

Z. Jiang, F. G. Sun, Q. Chen, and X. Zhang, Appl. Phys. Lett. 74, 1191 (1999).
[CrossRef]

1997

Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 71, 1285 (1997).
[CrossRef]

Bauer, T.

Cai, H.

S. Xu and H. Cai, Chin. Phys. Lett. 25, 152 (2008).
[CrossRef]

Calabrese, C.

Castro-Camus, E.

E. Castro-Camus, M. Palomar, and A. A. Covarrubias, Sci. Rep. 3, 02910 (2013).
[CrossRef]

Chen, Q.

Z. Jiang, F. G. Sun, Q. Chen, and X. Zhang, Appl. Phys. Lett. 74, 1191 (1999).
[CrossRef]

Covarrubias, A. A.

E. Castro-Camus, M. Palomar, and A. A. Covarrubias, Sci. Rep. 3, 02910 (2013).
[CrossRef]

Cui, Y.

X. Wang, Y. Cui, W. Sun, J. Ye, and Y. Zhang, Opt. Commun. 283, 4626 (2010).
[CrossRef]

Hattori, T.

T. Hattori, K. Ohta, R. Rungsawang, and K. Tukamoto, J. Phys. D 37, 770 (2004).
[CrossRef]

Hayashi, Y.

Y. Minami, Y. Hayashi, J. Takeda, and I. Katayama, Appl. Phys. Lett. 103, 051103 (2013).
[CrossRef]

Heeren, R. M. A.

A. Mashaghi, S. Mashaghi, I. Reviakine, and R. M. A. Heeren, Chem. Soc. Rev. 43, 887 (2014).
[CrossRef]

Henry, S.

S. Schecklman, L. M. Zurk, S. Henry, and G. P. Kniffin, J. Appl. Phys. 109, 094902 (2011).
[CrossRef]

Jia, T.

J. Wu, Y. Zhang, T. Jia, W. Xu, and P. Wu, Appl. Phys. Lett. 99, 161113 (2011).
[CrossRef]

Jiang, Z.

Z. Jiang, F. G. Sun, Q. Chen, and X. Zhang, Appl. Phys. Lett. 74, 1191 (1999).
[CrossRef]

Z. Jiang and X. Zhang, IEEE Trans. Microwave Theory Tech. 47, 2644 (1999).
[CrossRef]

Katayama, I.

Y. Minami, Y. Hayashi, J. Takeda, and I. Katayama, Appl. Phys. Lett. 103, 051103 (2013).
[CrossRef]

Kniffin, G. P.

S. Schecklman, L. M. Zurk, S. Henry, and G. P. Kniffin, J. Appl. Phys. 109, 094902 (2011).
[CrossRef]

Leemans, W. P.

Löffler, T.

Mashaghi, A.

A. Mashaghi, S. Mashaghi, I. Reviakine, and R. M. A. Heeren, Chem. Soc. Rev. 43, 887 (2014).
[CrossRef]

Mashaghi, S.

A. Mashaghi, S. Mashaghi, I. Reviakine, and R. M. A. Heeren, Chem. Soc. Rev. 43, 887 (2014).
[CrossRef]

Matlis, N. H.

Minami, Y.

Y. Minami, Y. Hayashi, J. Takeda, and I. Katayama, Appl. Phys. Lett. 103, 051103 (2013).
[CrossRef]

Ohta, K.

T. Hattori, K. Ohta, R. Rungsawang, and K. Tukamoto, J. Phys. D 37, 770 (2004).
[CrossRef]

Palomar, M.

E. Castro-Camus, M. Palomar, and A. A. Covarrubias, Sci. Rep. 3, 02910 (2013).
[CrossRef]

Petersen, P. B.

Plateau, G. R.

Reviakine, I.

A. Mashaghi, S. Mashaghi, I. Reviakine, and R. M. A. Heeren, Chem. Soc. Rev. 43, 887 (2014).
[CrossRef]

Roskos, H. G.

Rungsawang, R.

T. Hattori, K. Ohta, R. Rungsawang, and K. Tukamoto, J. Phys. D 37, 770 (2004).
[CrossRef]

Schecklman, S.

S. Schecklman, L. M. Zurk, S. Henry, and G. P. Kniffin, J. Appl. Phys. 109, 094902 (2011).
[CrossRef]

Stingel, A. M.

Sun, F. G.

Z. Jiang, F. G. Sun, Q. Chen, and X. Zhang, Appl. Phys. Lett. 74, 1191 (1999).
[CrossRef]

Sun, W.

X. Wang, Y. Cui, W. Sun, J. Ye, and Y. Zhang, Opt. Commun. 283, 4626 (2010).
[CrossRef]

Takeda, J.

Y. Minami, Y. Hayashi, J. Takeda, and I. Katayama, Appl. Phys. Lett. 103, 051103 (2013).
[CrossRef]

Tukamoto, K.

T. Hattori, K. Ohta, R. Rungsawang, and K. Tukamoto, J. Phys. D 37, 770 (2004).
[CrossRef]

van Tilborg, J.

Wang, X.

X. Wang, Y. Cui, W. Sun, J. Ye, and Y. Zhang, Opt. Commun. 283, 4626 (2010).
[CrossRef]

Wu, J.

J. Wu, Y. Zhang, T. Jia, W. Xu, and P. Wu, Appl. Phys. Lett. 99, 161113 (2011).
[CrossRef]

Wu, P.

J. Wu, Y. Zhang, T. Jia, W. Xu, and P. Wu, Appl. Phys. Lett. 99, 161113 (2011).
[CrossRef]

Wu, Q.

Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 71, 1285 (1997).
[CrossRef]

Xu, S.

S. Xu and H. Cai, Chin. Phys. Lett. 25, 152 (2008).
[CrossRef]

Xu, W.

J. Wu, Y. Zhang, T. Jia, W. Xu, and P. Wu, Appl. Phys. Lett. 99, 161113 (2011).
[CrossRef]

Ye, J.

X. Wang, Y. Cui, W. Sun, J. Ye, and Y. Zhang, Opt. Commun. 283, 4626 (2010).
[CrossRef]

Zhang, X.

Z. Jiang, F. G. Sun, Q. Chen, and X. Zhang, Appl. Phys. Lett. 74, 1191 (1999).
[CrossRef]

Z. Jiang and X. Zhang, IEEE Trans. Microwave Theory Tech. 47, 2644 (1999).
[CrossRef]

Zhang, X.-C.

Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 71, 1285 (1997).
[CrossRef]

Zhang, Y.

J. Wu, Y. Zhang, T. Jia, W. Xu, and P. Wu, Appl. Phys. Lett. 99, 161113 (2011).
[CrossRef]

X. Wang, Y. Cui, W. Sun, J. Ye, and Y. Zhang, Opt. Commun. 283, 4626 (2010).
[CrossRef]

Zurk, L. M.

S. Schecklman, L. M. Zurk, S. Henry, and G. P. Kniffin, J. Appl. Phys. 109, 094902 (2011).
[CrossRef]

Appl. Phys. Lett.

Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 71, 1285 (1997).
[CrossRef]

Z. Jiang, F. G. Sun, Q. Chen, and X. Zhang, Appl. Phys. Lett. 74, 1191 (1999).
[CrossRef]

Y. Minami, Y. Hayashi, J. Takeda, and I. Katayama, Appl. Phys. Lett. 103, 051103 (2013).
[CrossRef]

J. Wu, Y. Zhang, T. Jia, W. Xu, and P. Wu, Appl. Phys. Lett. 99, 161113 (2011).
[CrossRef]

Chem. Soc. Rev.

A. Mashaghi, S. Mashaghi, I. Reviakine, and R. M. A. Heeren, Chem. Soc. Rev. 43, 887 (2014).
[CrossRef]

Chin. Phys. Lett.

S. Xu and H. Cai, Chin. Phys. Lett. 25, 152 (2008).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

Z. Jiang and X. Zhang, IEEE Trans. Microwave Theory Tech. 47, 2644 (1999).
[CrossRef]

J. Appl. Phys.

S. Schecklman, L. M. Zurk, S. Henry, and G. P. Kniffin, J. Appl. Phys. 109, 094902 (2011).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D

T. Hattori, K. Ohta, R. Rungsawang, and K. Tukamoto, J. Phys. D 37, 770 (2004).
[CrossRef]

Opt. Commun.

X. Wang, Y. Cui, W. Sun, J. Ye, and Y. Zhang, Opt. Commun. 283, 4626 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Sci. Rep.

E. Castro-Camus, M. Palomar, and A. A. Covarrubias, Sci. Rep. 3, 02910 (2013).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Setups of (a) our modified CB-EOS with its prism splitter (marked within the dashed square box) and (b) the CB-EOS. SBS, silicon beam splitter plate; PS, prism splitter; M, mirrors; EO, EO crystal; BSP, beam splitter plate; VA, neutral filter; P02, linear polarizers; C12, birefringent phase compensators; D12, receivers; DMM, digital multimeter.

Fig. 2.
Fig. 2.

Measured optical modulation depths versus static birefringent phases with modified CB-EOS (black line) and CB-EOS (red line).

Fig. 3.
Fig. 3.

Measured THz temporal profiles for different static birefringent phases with (a) our modified CB-EOS and (b) the CB-EOS.

Fig. 4.
Fig. 4.

(a) Measured noises and (b) normalized THz fields of our modified CB-EOS (α1=0.029rad, black lines) and the CB-EOS (α1=0.106rad, red lines).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I1=Px22[χI0cos2δ12+(Ix0+χ2Iy0)sin2δ12],
I2=Px22[χI0cos2δ22+(Ix0+χ2Iy0)sin2δ22].
S=η(I1I2)=η(Px2Ix0+Py2Iy0PxPyI0)2sinα1sinδT.
γ=(I1I2)|δT0(I1+I2)|δT=0+(I1+I2)|δT0.

Metrics