Abstract

Er3+ doped powders are generally used for fluorescence-based temperature sensing application when near-infrared lasers are the excitation sources of choice. The fluorescence of Er3+ is produced by nonlinear (upconversion) processes, which generate strong internal heat. Lowering the excitation power causes drastic reduction of the fluorescence signal, and as a consequence the sensor applicability of Er3+ doped powders becomes compromised. Here we propose the use of the downconverted fluorescence of Yb3+ produced by efficient energy transfer from Nd3+ as an alternative temperature sensing system. Our results are presented for yttrium silicate powders prepared by combustion synthesis.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kusama, O. J. Sovers, and T. Yoshioka, Jpn. J. Appl. Phys. 15, 2349 (1976).
  2. L. L. Xing, Y. L. Xu, R. Wang, W. Xu, and Z. G. Zhang, Opt. Lett. 39, 454 (2014).
    [CrossRef]
  3. W. Xu, H. Zhao, Y. X. Li, L. J. Zheng, Z. G. Zhang, and W. W. Cao, Sens. Actuators B 188, 1096 (2013).
  4. V. K. Rai and C. B. de Araújo, Spectrochim. Acta A 69, 509 (2008).
  5. H. Berthou and C. K. Jørgensen, Opt. Lett. 15, 1100 (1990).
    [CrossRef]
  6. F. Vetrone, R. Naccache, A. Zamarron, A. J. de la Fuente, F. Sanz-Rodriguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, ACS Nano 4, 3254 (2010).
    [CrossRef]
  7. R. Dey and V. K. Rai, Dalton Trans. 43, 111 (2014).
  8. M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, Appl. Phys. Express 4, 022601 (2011).
    [CrossRef]
  9. N. Rakov and G. S. Maciel, Sens. Actuators B 164, 96 (2012).
  10. E. Maurice, S. A. Wade, S. F. Collins, G. Monnom, and G. W. Baxter, Appl. Opt. 36, 8264 (1997).
    [CrossRef]
  11. S. A. Wade, S. F. Collins, G. W. Baxter, and G. Monnom, Rev. Sci. Instrum. 27, 3180 (2001).
  12. V. K. Tikhomirov, K. Driesen, V. D. Rodriguez, P. Gredin, M. Mortier, and V. V. Moshchalkov, Opt. Express 17, 11794 (2009).
    [CrossRef]
  13. S. K. Singh, K. Kumar, and S. B. Rai, Appl. Phys. B 100, 443 (2010).
    [CrossRef]
  14. N. Rakov, R. B. Guimarães, and G. S. Maciel, Appl. Phys. B 98, 435 (2010).
    [CrossRef]

2014 (2)

2013 (1)

W. Xu, H. Zhao, Y. X. Li, L. J. Zheng, Z. G. Zhang, and W. W. Cao, Sens. Actuators B 188, 1096 (2013).

2012 (1)

N. Rakov and G. S. Maciel, Sens. Actuators B 164, 96 (2012).

2011 (1)

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, Appl. Phys. Express 4, 022601 (2011).
[CrossRef]

2010 (3)

F. Vetrone, R. Naccache, A. Zamarron, A. J. de la Fuente, F. Sanz-Rodriguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, ACS Nano 4, 3254 (2010).
[CrossRef]

S. K. Singh, K. Kumar, and S. B. Rai, Appl. Phys. B 100, 443 (2010).
[CrossRef]

N. Rakov, R. B. Guimarães, and G. S. Maciel, Appl. Phys. B 98, 435 (2010).
[CrossRef]

2009 (1)

2008 (1)

V. K. Rai and C. B. de Araújo, Spectrochim. Acta A 69, 509 (2008).

2001 (1)

S. A. Wade, S. F. Collins, G. W. Baxter, and G. Monnom, Rev. Sci. Instrum. 27, 3180 (2001).

1997 (1)

1990 (1)

1976 (1)

H. Kusama, O. J. Sovers, and T. Yoshioka, Jpn. J. Appl. Phys. 15, 2349 (1976).

Baxter, G. W.

S. A. Wade, S. F. Collins, G. W. Baxter, and G. Monnom, Rev. Sci. Instrum. 27, 3180 (2001).

E. Maurice, S. A. Wade, S. F. Collins, G. Monnom, and G. W. Baxter, Appl. Opt. 36, 8264 (1997).
[CrossRef]

Berthou, H.

Caballero, A. C.

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, Appl. Phys. Express 4, 022601 (2011).
[CrossRef]

Cantelar, E.

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, Appl. Phys. Express 4, 022601 (2011).
[CrossRef]

Cao, W. W.

W. Xu, H. Zhao, Y. X. Li, L. J. Zheng, Z. G. Zhang, and W. W. Cao, Sens. Actuators B 188, 1096 (2013).

Capobianco, J. A.

F. Vetrone, R. Naccache, A. Zamarron, A. J. de la Fuente, F. Sanz-Rodriguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, ACS Nano 4, 3254 (2010).
[CrossRef]

Collins, S. F.

S. A. Wade, S. F. Collins, G. W. Baxter, and G. Monnom, Rev. Sci. Instrum. 27, 3180 (2001).

E. Maurice, S. A. Wade, S. F. Collins, G. Monnom, and G. W. Baxter, Appl. Opt. 36, 8264 (1997).
[CrossRef]

Cussó, F.

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, Appl. Phys. Express 4, 022601 (2011).
[CrossRef]

de Araújo, C. B.

V. K. Rai and C. B. de Araújo, Spectrochim. Acta A 69, 509 (2008).

de la Fuente, A. J.

F. Vetrone, R. Naccache, A. Zamarron, A. J. de la Fuente, F. Sanz-Rodriguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, ACS Nano 4, 3254 (2010).
[CrossRef]

Dey, R.

R. Dey and V. K. Rai, Dalton Trans. 43, 111 (2014).

Driesen, K.

Gredin, P.

Guimarães, R. B.

N. Rakov, R. B. Guimarães, and G. S. Maciel, Appl. Phys. B 98, 435 (2010).
[CrossRef]

Jaque, D.

F. Vetrone, R. Naccache, A. Zamarron, A. J. de la Fuente, F. Sanz-Rodriguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, ACS Nano 4, 3254 (2010).
[CrossRef]

Jørgensen, C. K.

Kumar, K.

S. K. Singh, K. Kumar, and S. B. Rai, Appl. Phys. B 100, 443 (2010).
[CrossRef]

Kusama, H.

H. Kusama, O. J. Sovers, and T. Yoshioka, Jpn. J. Appl. Phys. 15, 2349 (1976).

Li, Y. X.

W. Xu, H. Zhao, Y. X. Li, L. J. Zheng, Z. G. Zhang, and W. W. Cao, Sens. Actuators B 188, 1096 (2013).

Maciel, G. S.

N. Rakov and G. S. Maciel, Sens. Actuators B 164, 96 (2012).

N. Rakov, R. B. Guimarães, and G. S. Maciel, Appl. Phys. B 98, 435 (2010).
[CrossRef]

Maestro, L. M.

F. Vetrone, R. Naccache, A. Zamarron, A. J. de la Fuente, F. Sanz-Rodriguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, ACS Nano 4, 3254 (2010).
[CrossRef]

Maurice, E.

Monnom, G.

S. A. Wade, S. F. Collins, G. W. Baxter, and G. Monnom, Rev. Sci. Instrum. 27, 3180 (2001).

E. Maurice, S. A. Wade, S. F. Collins, G. Monnom, and G. W. Baxter, Appl. Opt. 36, 8264 (1997).
[CrossRef]

Mortier, M.

Moshchalkov, V. V.

Naccache, R.

F. Vetrone, R. Naccache, A. Zamarron, A. J. de la Fuente, F. Sanz-Rodriguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, ACS Nano 4, 3254 (2010).
[CrossRef]

Quintanilla, M.

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, Appl. Phys. Express 4, 022601 (2011).
[CrossRef]

Rai, S. B.

S. K. Singh, K. Kumar, and S. B. Rai, Appl. Phys. B 100, 443 (2010).
[CrossRef]

Rai, V. K.

R. Dey and V. K. Rai, Dalton Trans. 43, 111 (2014).

V. K. Rai and C. B. de Araújo, Spectrochim. Acta A 69, 509 (2008).

Rakov, N.

N. Rakov and G. S. Maciel, Sens. Actuators B 164, 96 (2012).

N. Rakov, R. B. Guimarães, and G. S. Maciel, Appl. Phys. B 98, 435 (2010).
[CrossRef]

Rodriguez, E. M.

F. Vetrone, R. Naccache, A. Zamarron, A. J. de la Fuente, F. Sanz-Rodriguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, ACS Nano 4, 3254 (2010).
[CrossRef]

Rodriguez, V. D.

Sanz-Rodriguez, F.

F. Vetrone, R. Naccache, A. Zamarron, A. J. de la Fuente, F. Sanz-Rodriguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, ACS Nano 4, 3254 (2010).
[CrossRef]

Singh, S. K.

S. K. Singh, K. Kumar, and S. B. Rai, Appl. Phys. B 100, 443 (2010).
[CrossRef]

Sole, J. G.

F. Vetrone, R. Naccache, A. Zamarron, A. J. de la Fuente, F. Sanz-Rodriguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, ACS Nano 4, 3254 (2010).
[CrossRef]

Sovers, O. J.

H. Kusama, O. J. Sovers, and T. Yoshioka, Jpn. J. Appl. Phys. 15, 2349 (1976).

Tikhomirov, V. K.

Vetrone, F.

F. Vetrone, R. Naccache, A. Zamarron, A. J. de la Fuente, F. Sanz-Rodriguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, ACS Nano 4, 3254 (2010).
[CrossRef]

Villegas, M.

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, Appl. Phys. Express 4, 022601 (2011).
[CrossRef]

Wade, S. A.

S. A. Wade, S. F. Collins, G. W. Baxter, and G. Monnom, Rev. Sci. Instrum. 27, 3180 (2001).

E. Maurice, S. A. Wade, S. F. Collins, G. Monnom, and G. W. Baxter, Appl. Opt. 36, 8264 (1997).
[CrossRef]

Wang, R.

Xing, L. L.

Xu, W.

L. L. Xing, Y. L. Xu, R. Wang, W. Xu, and Z. G. Zhang, Opt. Lett. 39, 454 (2014).
[CrossRef]

W. Xu, H. Zhao, Y. X. Li, L. J. Zheng, Z. G. Zhang, and W. W. Cao, Sens. Actuators B 188, 1096 (2013).

Xu, Y. L.

Yoshioka, T.

H. Kusama, O. J. Sovers, and T. Yoshioka, Jpn. J. Appl. Phys. 15, 2349 (1976).

Zamarron, A.

F. Vetrone, R. Naccache, A. Zamarron, A. J. de la Fuente, F. Sanz-Rodriguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, ACS Nano 4, 3254 (2010).
[CrossRef]

Zhang, Z. G.

L. L. Xing, Y. L. Xu, R. Wang, W. Xu, and Z. G. Zhang, Opt. Lett. 39, 454 (2014).
[CrossRef]

W. Xu, H. Zhao, Y. X. Li, L. J. Zheng, Z. G. Zhang, and W. W. Cao, Sens. Actuators B 188, 1096 (2013).

Zhao, H.

W. Xu, H. Zhao, Y. X. Li, L. J. Zheng, Z. G. Zhang, and W. W. Cao, Sens. Actuators B 188, 1096 (2013).

Zheng, L. J.

W. Xu, H. Zhao, Y. X. Li, L. J. Zheng, Z. G. Zhang, and W. W. Cao, Sens. Actuators B 188, 1096 (2013).

ACS Nano (1)

F. Vetrone, R. Naccache, A. Zamarron, A. J. de la Fuente, F. Sanz-Rodriguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, ACS Nano 4, 3254 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

S. K. Singh, K. Kumar, and S. B. Rai, Appl. Phys. B 100, 443 (2010).
[CrossRef]

N. Rakov, R. B. Guimarães, and G. S. Maciel, Appl. Phys. B 98, 435 (2010).
[CrossRef]

Appl. Phys. Express (1)

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, Appl. Phys. Express 4, 022601 (2011).
[CrossRef]

Dalton Trans. (1)

R. Dey and V. K. Rai, Dalton Trans. 43, 111 (2014).

Jpn. J. Appl. Phys. (1)

H. Kusama, O. J. Sovers, and T. Yoshioka, Jpn. J. Appl. Phys. 15, 2349 (1976).

Opt. Express (1)

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

S. A. Wade, S. F. Collins, G. W. Baxter, and G. Monnom, Rev. Sci. Instrum. 27, 3180 (2001).

Sens. Actuators B (2)

W. Xu, H. Zhao, Y. X. Li, L. J. Zheng, Z. G. Zhang, and W. W. Cao, Sens. Actuators B 188, 1096 (2013).

N. Rakov and G. S. Maciel, Sens. Actuators B 164, 96 (2012).

Spectrochim. Acta A (1)

V. K. Rai and C. B. de Araújo, Spectrochim. Acta A 69, 509 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Room temperature normalized (a) upconverted fluorescence intensity spectra of Er3+-doped Y2SiO5 powder and (b) downconverted fluorescence intensity spectra of Nd3+Yb3+ co-doped Y2SiO5 powder. The excitation source was a CW diode laser (wavelength: 808 nm). The data were taken at two different laser power values.

Fig. 2.
Fig. 2.

Normalized (a) upconverted fluorescence intensity spectra of Er3+-doped Y2SiO5 powder and (b) downconverted fluorescence intensity spectra of Nd3+Yb3+ co-doped Y2SiO5 powder. The excitation source was a CW diode laser (wavelength: 808 nm) with output power of 0.05 W. The spectra were recorded at two different temperatures with the data on the left being smoothed (by averaging) to reduce noise.

Fig. 3.
Fig. 3.

Scheme of excitation (upward arrows) and fluorescence (downward arrows with numbers representing center wavelengths) of Er3+ and Nd3+Yb3+ doped systems for FIR temperature sensing. Nonradiative decay and energy-transfer channels are shown as inclined and straight dotted arrows, respectively.

Fig. 4.
Fig. 4.

Fluorescence decay of Nd3+ (0.5 wt. %) in Y2SiO5 powders with (2.0 and 4.0 wt. %) and without Yb3+. Excitation wavelength and pulse duration: 355 nm and 5 ns.

Fig. 5.
Fig. 5.

Plot of the fluorescence intensity ratio as a function of the inverse temperature in a monolog scale. The excitation source was a CW diode laser (wavelength: 808 nm) with output power of 0.05 W. The solid line represents the linear best-fit function.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

FIR=I2I1=Bexp(ΔEkT),
S=d(FIR)dT=FIR×ΔEkT2.

Metrics