Abstract

The effective speed of a swept source optical coherence tomography (SSOCT) imaging system was quadrupled using efficient sweep buffering along with coherence revival and spatial multiplexing. A polarizing beam splitter and fold mirror assembly were used to create a dual spot sample arm with a common objective designed for near-diffraction-limited retinal imaging. Using coherence revival, a variable optical delay line allowed for separate locations within a sample to be simultaneously imaged and frequency encoded by carefully controlling the optical path length of each sample path. This method can be used to efficiently quadruple the imaging speed of any SSOCT system employing a low duty-cycle laser that exhibits coherence revival. The system was used to image the retina of healthy human volunteers.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. K. Hitzenberger, Investig. Ophthalmol. Vis. Sci. 32, 616 (1991).
  2. A. Baumgartner, C. K. Hitzenberger, H. Sattmann, W. Drexler, and A. F. Fercher, J. Biomed. Opt. 3, 45 (1998).
    [CrossRef]
  3. M. K. K. Leung, A. Mariampillai, B. A. Standish, K. K. C. Lee, N. R. Munce, I. A. Vitkin, and V. X. D. Yang, Opt. Lett. 34, 2814 (2009).
    [CrossRef]
  4. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, Opt. Express 18, 14685 (2010).
    [CrossRef]
  5. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, Opt. Express 18, 20029 (2010).
    [CrossRef]
  6. A.-H. Dhalla, D. Nankivil, and J. A. Izatt, Biomed. Opt. Express 3, 633 (2012).
    [CrossRef]
  7. A.-H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, and J. A. Izatt, Opt. Lett. 37, 1883 (2012).
    [CrossRef]
  8. A.-H. Dhalla, K. Shia, and J. A. Izatt, Biomed. Opt. Express 3, 3054 (2012).
    [CrossRef]
  9. Laser Institute of America, American national standard for safe use of lasers ANSI Z136.1–2007 (American National Standards Institute, 2007).
  10. A. V. Goncharov and C. Dainty, J. Opt. Soc. Am. A 24, 2157 (2007).
    [CrossRef]
  11. R. Estrada, C. Tomasi, M. T. Cabrera, D. K. Wallace, S. F. Freedman, and S. Farsiu, Biomed. Opt. Express 2, 2871 (2011).
    [CrossRef]
  12. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, Opt. Express 18, 19413 (2010).
    [CrossRef]
  13. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, IEEE Trans. Image Process. 16, 2080 (2007).
    [CrossRef]

2012

2011

2010

2009

2007

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, IEEE Trans. Image Process. 16, 2080 (2007).
[CrossRef]

A. V. Goncharov and C. Dainty, J. Opt. Soc. Am. A 24, 2157 (2007).
[CrossRef]

1998

A. Baumgartner, C. K. Hitzenberger, H. Sattmann, W. Drexler, and A. F. Fercher, J. Biomed. Opt. 3, 45 (1998).
[CrossRef]

1991

C. K. Hitzenberger, Investig. Ophthalmol. Vis. Sci. 32, 616 (1991).

Barry, S.

Baumann, B.

Baumgartner, A.

A. Baumgartner, C. K. Hitzenberger, H. Sattmann, W. Drexler, and A. F. Fercher, J. Biomed. Opt. 3, 45 (1998).
[CrossRef]

Biedermann, B. R.

Bustamante, T.

Cable, A. E.

Cabrera, M. T.

Chiu, S. J.

Dabov, K.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, IEEE Trans. Image Process. 16, 2080 (2007).
[CrossRef]

Dainty, C.

Dhalla, A.-H.

Drexler, W.

A. Baumgartner, C. K. Hitzenberger, H. Sattmann, W. Drexler, and A. F. Fercher, J. Biomed. Opt. 3, 45 (1998).
[CrossRef]

Duker, J. S.

Egiazarian, K.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, IEEE Trans. Image Process. 16, 2080 (2007).
[CrossRef]

Eigenwillig, C. M.

Estrada, R.

Farsiu, S.

Fercher, A. F.

A. Baumgartner, C. K. Hitzenberger, H. Sattmann, W. Drexler, and A. F. Fercher, J. Biomed. Opt. 3, 45 (1998).
[CrossRef]

Foi, A.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, IEEE Trans. Image Process. 16, 2080 (2007).
[CrossRef]

Freedman, S. F.

Fujimoto, J. G.

Goncharov, A. V.

Hitzenberger, C. K.

A. Baumgartner, C. K. Hitzenberger, H. Sattmann, W. Drexler, and A. F. Fercher, J. Biomed. Opt. 3, 45 (1998).
[CrossRef]

C. K. Hitzenberger, Investig. Ophthalmol. Vis. Sci. 32, 616 (1991).

Huang, D.

Huber, R.

Izatt, J. A.

Katkovnik, V.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, IEEE Trans. Image Process. 16, 2080 (2007).
[CrossRef]

Klein, T.

Kuo, A.

Lee, K. K. C.

Leung, M. K. K.

Li, X. T.

Mariampillai, A.

Munce, N. R.

Nankivil, D.

Nicholas, P.

Potsaid, B.

Sattmann, H.

A. Baumgartner, C. K. Hitzenberger, H. Sattmann, W. Drexler, and A. F. Fercher, J. Biomed. Opt. 3, 45 (1998).
[CrossRef]

Schuman, J. S.

Shia, K.

Standish, B. A.

Tomasi, C.

Toth, C. A.

Vitkin, I. A.

Wallace, D. K.

Wieser, W.

Yang, V. X. D.

Biomed. Opt. Express

IEEE Trans. Image Process.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, IEEE Trans. Image Process. 16, 2080 (2007).
[CrossRef]

Investig. Ophthalmol. Vis. Sci.

C. K. Hitzenberger, Investig. Ophthalmol. Vis. Sci. 32, 616 (1991).

J. Biomed. Opt.

A. Baumgartner, C. K. Hitzenberger, H. Sattmann, W. Drexler, and A. F. Fercher, J. Biomed. Opt. 3, 45 (1998).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Other

Laser Institute of America, American national standard for safe use of lasers ANSI Z136.1–2007 (American National Standards Institute, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

SSOCT buffered, dual spot system with Mach–Zehnder topology. PC, polarization controller; UP, unused port; BD, beam dump; BR, balanced receiver. Sample arm: blue and red lines depict the primary and secondary beams, respectively. Overlapping paths are shown in purple. L1 and L2, lenses. PBS, polarizing beamsplitter; FM, fold mirror; G, galvanometers; θ, angle between primary and secondary beams. Transmissive reference arm: RR, retroreflector. Adjustability shown with black arrows.

Fig. 2.
Fig. 2.

Sensitivity falloff profiles and axial resolution (in air) for the primary (left) and secondary (right) imaging channels and for both the unbuffered (top) and buffered (bottom) sweeps. The red fit lines indicate the falloff envelope.

Fig. 3.
Fig. 3.

Results of dual spot SSOCT image processing and registration pipeline. Two subfield-of-view volumes were acquired simultaneously, consisting of 1000 A-scans per B-scan for a total of 200 B-scans. The two subvolumes were used to create SVPs, shown for the secondary channel in A and the primary channel in B. The SVPs were then Gabor filtered to accentuate the contrast of the vessels and the peak of the cross correlation was used to obtain the lateral offsets. These offsets were applied and the relative weights of the overlapping region were feathered to generate a registered SVP in C. The inner limiting membrane and the retinal pigment epithelium were automatically segmented, shown in red in D. Using only the region of overlap between the two images, the layer segmentation was used for axial registration, shown after denoising in E.

Fig. 4.
Fig. 4.

Images from two different healthy volunteers. The red dashed box shows the overlap between the two images. A is a single frame buffered dual spot image acquired with an effective A-scan rate of 400 kHz. B is a single unbuffered denoised frame. C is the result of rigid body registration and averaging of 20 individual unbuffered frames. A and B are from the same volunteer, and C is from a different volunteer.

Metrics