Abstract

Prism-coupling through the microstructured cladding is used to selectively excite individual higher order modes in hollow-core photonic crystal fibers (PCFs). Mode selection is achieved by varying the angle between the incoming beam and the fiber axis, in order to match the axial wavevector component to that of the desired mode. The technique allows accurate measurement of the effective indices and transmission losses of modes of arbitrary order, even those with highly complex transverse field distributions that would be extremely difficult to excite by conventional endfire coupling.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Ramachandran, J. Lightwave Technol. 23, 3426 (2005).
    [CrossRef]
  2. J. Demas, P. Steinvurzel, B. Tai, Y. Chen, and S. Ramachandran, in CLEO, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu2E.5.
  3. P. Fulda, K. Kokeyama, S. Chelkowski, and A. Freise, Phys. Rev. D 82, 012002 (2010).
    [CrossRef]
  4. M. Padgett and R. Bowman, Nat. Photonics 5, 343 (2011).
    [CrossRef]
  5. D. P. Rhodes, D. M. Gherardi, J. Livesey, D. McGloin, H. Melville, T. Freegarde, and K. Dholakia, J. Mod. Opt. 53, 547 (2006).
    [CrossRef]
  6. S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, Laser Photon. Rev. 2, 429 (2008).
  7. B. M. Trabold, A. Abdolvand, T. G. Euser, and P. St.J. Russell, Opt. Express 21, 29711 (2013).
    [CrossRef]
  8. J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St.J. Russell, J. Opt. Soc. Am. B 28, A11 (2011).
    [CrossRef]
  9. A. A. Ishaaya, N. Davidson, and A. A. Friesem, Opt. Express 13, 4952 (2005).
    [CrossRef]
  10. M. P. Thirugnanasambandam, Y. Senatsky, and K. Ueda, Laser Phys. Lett. 7, 637 (2010).
    [CrossRef]
  11. M. Beresna, M. Geceviius, P. G. Kazansky, and T. Gertus, Appl. Phys. Lett. 98, 201101 (2011).
    [CrossRef]
  12. T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St.J. Russell, Opt. Express 16, 17972 (2008).
    [CrossRef]
  13. H. Liang, W. Zhang, P. Geng, Y. Liu, Z. Wang, J. Guo, S. Gao, and S. Yan, Opt. Lett. 38, 1071 (2013).
    [CrossRef]
  14. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St.J. Russell, Opt. Express 15, 12680 (2007).
    [CrossRef]
  15. E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).
    [CrossRef]
  16. J. Stone and L. G. Cohen, Electron. Lett. 18, 716 (1982).
    [CrossRef]
  17. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
    [CrossRef]
  18. B. M. Trabold, A. Abdolvand, T. G. Euser, A. M. Walser, and P. St.J. Russell, Opt. Lett. 38, 600 (2013).
    [CrossRef]

2013 (3)

2011 (3)

M. Beresna, M. Geceviius, P. G. Kazansky, and T. Gertus, Appl. Phys. Lett. 98, 201101 (2011).
[CrossRef]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St.J. Russell, J. Opt. Soc. Am. B 28, A11 (2011).
[CrossRef]

M. Padgett and R. Bowman, Nat. Photonics 5, 343 (2011).
[CrossRef]

2010 (2)

P. Fulda, K. Kokeyama, S. Chelkowski, and A. Freise, Phys. Rev. D 82, 012002 (2010).
[CrossRef]

M. P. Thirugnanasambandam, Y. Senatsky, and K. Ueda, Laser Phys. Lett. 7, 637 (2010).
[CrossRef]

2008 (2)

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, Laser Photon. Rev. 2, 429 (2008).

T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St.J. Russell, Opt. Express 16, 17972 (2008).
[CrossRef]

2007 (2)

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St.J. Russell, Opt. Express 15, 12680 (2007).
[CrossRef]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[CrossRef]

2006 (1)

D. P. Rhodes, D. M. Gherardi, J. Livesey, D. McGloin, H. Melville, T. Freegarde, and K. Dholakia, J. Mod. Opt. 53, 547 (2006).
[CrossRef]

2005 (2)

1982 (1)

J. Stone and L. G. Cohen, Electron. Lett. 18, 716 (1982).
[CrossRef]

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).
[CrossRef]

Abdolvand, A.

Benabid, F.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[CrossRef]

Beresna, M.

M. Beresna, M. Geceviius, P. G. Kazansky, and T. Gertus, Appl. Phys. Lett. 98, 201101 (2011).
[CrossRef]

Bowman, R.

M. Padgett and R. Bowman, Nat. Photonics 5, 343 (2011).
[CrossRef]

Burger, S.

Chang, W.

Chelkowski, S.

P. Fulda, K. Kokeyama, S. Chelkowski, and A. Freise, Phys. Rev. D 82, 012002 (2010).
[CrossRef]

Chen, J. S. Y.

Chen, Y.

J. Demas, P. Steinvurzel, B. Tai, Y. Chen, and S. Ramachandran, in CLEO, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu2E.5.

Cohen, L. G.

J. Stone and L. G. Cohen, Electron. Lett. 18, 716 (1982).
[CrossRef]

Couny, F.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[CrossRef]

Davidson, N.

Demas, J.

J. Demas, P. Steinvurzel, B. Tai, Y. Chen, and S. Ramachandran, in CLEO, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu2E.5.

Dholakia, K.

D. P. Rhodes, D. M. Gherardi, J. Livesey, D. McGloin, H. Melville, T. Freegarde, and K. Dholakia, J. Mod. Opt. 53, 547 (2006).
[CrossRef]

Euser, T. G.

Fini, J. M.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, Laser Photon. Rev. 2, 429 (2008).

Freegarde, T.

D. P. Rhodes, D. M. Gherardi, J. Livesey, D. McGloin, H. Melville, T. Freegarde, and K. Dholakia, J. Mod. Opt. 53, 547 (2006).
[CrossRef]

Freise, A.

P. Fulda, K. Kokeyama, S. Chelkowski, and A. Freise, Phys. Rev. D 82, 012002 (2010).
[CrossRef]

Friesem, A. A.

Fulda, P.

P. Fulda, K. Kokeyama, S. Chelkowski, and A. Freise, Phys. Rev. D 82, 012002 (2010).
[CrossRef]

Gao, S.

Geceviius, M.

M. Beresna, M. Geceviius, P. G. Kazansky, and T. Gertus, Appl. Phys. Lett. 98, 201101 (2011).
[CrossRef]

Geng, P.

Gertus, T.

M. Beresna, M. Geceviius, P. G. Kazansky, and T. Gertus, Appl. Phys. Lett. 98, 201101 (2011).
[CrossRef]

Ghalmi, S.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, Laser Photon. Rev. 2, 429 (2008).

Gherardi, D. M.

D. P. Rhodes, D. M. Gherardi, J. Livesey, D. McGloin, H. Melville, T. Freegarde, and K. Dholakia, J. Mod. Opt. 53, 547 (2006).
[CrossRef]

Guo, J.

Ishaaya, A. A.

Joly, N. Y.

Kaminski, C. F.

Kazansky, P. G.

M. Beresna, M. Geceviius, P. G. Kazansky, and T. Gertus, Appl. Phys. Lett. 98, 201101 (2011).
[CrossRef]

Kokeyama, K.

P. Fulda, K. Kokeyama, S. Chelkowski, and A. Freise, Phys. Rev. D 82, 012002 (2010).
[CrossRef]

Liang, H.

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[CrossRef]

Liu, Y.

Livesey, J.

D. P. Rhodes, D. M. Gherardi, J. Livesey, D. McGloin, H. Melville, T. Freegarde, and K. Dholakia, J. Mod. Opt. 53, 547 (2006).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).
[CrossRef]

McGloin, D.

D. P. Rhodes, D. M. Gherardi, J. Livesey, D. McGloin, H. Melville, T. Freegarde, and K. Dholakia, J. Mod. Opt. 53, 547 (2006).
[CrossRef]

Melville, H.

D. P. Rhodes, D. M. Gherardi, J. Livesey, D. McGloin, H. Melville, T. Freegarde, and K. Dholakia, J. Mod. Opt. 53, 547 (2006).
[CrossRef]

Mermelstein, M.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, Laser Photon. Rev. 2, 429 (2008).

Nicholson, J. W.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, Laser Photon. Rev. 2, 429 (2008).

Nold, J.

Padgett, M.

M. Padgett and R. Bowman, Nat. Photonics 5, 343 (2011).
[CrossRef]

Pearce, G. J.

Poulton, C. G.

Ramachandran, S.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, Laser Photon. Rev. 2, 429 (2008).

S. Ramachandran, J. Lightwave Technol. 23, 3426 (2005).
[CrossRef]

J. Demas, P. Steinvurzel, B. Tai, Y. Chen, and S. Ramachandran, in CLEO, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu2E.5.

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[CrossRef]

Rhodes, D. P.

D. P. Rhodes, D. M. Gherardi, J. Livesey, D. McGloin, H. Melville, T. Freegarde, and K. Dholakia, J. Mod. Opt. 53, 547 (2006).
[CrossRef]

Roberts, P. J.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[CrossRef]

Russell, P. St.J.

Scharrer, M.

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).
[CrossRef]

Senatsky, Y.

M. P. Thirugnanasambandam, Y. Senatsky, and K. Ueda, Laser Phys. Lett. 7, 637 (2010).
[CrossRef]

Steinvurzel, P.

J. Demas, P. Steinvurzel, B. Tai, Y. Chen, and S. Ramachandran, in CLEO, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu2E.5.

Stone, J.

J. Stone and L. G. Cohen, Electron. Lett. 18, 716 (1982).
[CrossRef]

Tai, B.

J. Demas, P. Steinvurzel, B. Tai, Y. Chen, and S. Ramachandran, in CLEO, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu2E.5.

Thirugnanasambandam, M. P.

M. P. Thirugnanasambandam, Y. Senatsky, and K. Ueda, Laser Phys. Lett. 7, 637 (2010).
[CrossRef]

Trabold, B. M.

Travers, J. C.

Ueda, K.

M. P. Thirugnanasambandam, Y. Senatsky, and K. Ueda, Laser Phys. Lett. 7, 637 (2010).
[CrossRef]

Walser, A. M.

Wang, Z.

Whyte, G.

Wiederhecker, G. S.

Yan, M. F.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, Laser Photon. Rev. 2, 429 (2008).

Yan, S.

Zhang, W.

Appl. Phys. Lett. (1)

M. Beresna, M. Geceviius, P. G. Kazansky, and T. Gertus, Appl. Phys. Lett. 98, 201101 (2011).
[CrossRef]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).
[CrossRef]

Electron. Lett. (1)

J. Stone and L. G. Cohen, Electron. Lett. 18, 716 (1982).
[CrossRef]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

D. P. Rhodes, D. M. Gherardi, J. Livesey, D. McGloin, H. Melville, T. Freegarde, and K. Dholakia, J. Mod. Opt. 53, 547 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, Laser Photon. Rev. 2, 429 (2008).

Laser Phys. Lett. (1)

M. P. Thirugnanasambandam, Y. Senatsky, and K. Ueda, Laser Phys. Lett. 7, 637 (2010).
[CrossRef]

Nat. Photonics (1)

M. Padgett and R. Bowman, Nat. Photonics 5, 343 (2011).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. D (1)

P. Fulda, K. Kokeyama, S. Chelkowski, and A. Freise, Phys. Rev. D 82, 012002 (2010).
[CrossRef]

Science (1)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[CrossRef]

Other (1)

J. Demas, P. Steinvurzel, B. Tai, Y. Chen, and S. Ramachandran, in CLEO, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu2E.5.

Supplementary Material (1)

» Media 1: AVI (8039 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Sketch of the setup. SMF, single-mode fiber; CL, cylindrical lens focusing in the x-direction (orthogonal to the paper); CCD, camera to image the fiber end-face; and P, prism settled on top of the fiber to facilitate the coupling. Inset: scanning electron micrograph of the kagomé-PCF (white, glass; black, air).

Fig. 2.
Fig. 2.

(a) Schematic of the optical path of the side-coupled beam (orange/purple/blue) and the guided core mode (green). Grey, silica; white, air. The fiber–prism gap is filled with index-matching fluid. (b) Two-dimensional refractive index diagram in reciprocal space. Arrows indicate the phase index of the rays outside the fiber (orange), in the glass (purple), and in the core (blue). Construction line g is used to trace the first refraction at the air–prism interface, and construction line h for all subsequent refractions within the fiber, which have no effect on the axial component nz. To excite the LPpm core mode, the axial projection nz of the index of the side-coupled beam has to match the modal index npm (green).

Fig. 3.
Fig. 3.

Plots of the in-coupling angle αair required to excite the LP01 mode (red, right y axis), the corresponding transmission at the air–prism interface (dashed blue, left y axis), and the difference Δαair between the in-coupling angles for the LP01 and the LP11 modes (solid blue, left y axis) as a function of the prism angle αw. Inset: close-up of the main plot for small prism angles. A prism angle αw=1° was used in the experiment (black line).

Fig. 4.
Fig. 4.

Near-field intensity distributions (linear scale) at the fiber end-face of a selection of core modes excited by side-coupling, overlaid onto the SEM of the fiber. (a) LP01, (b) LP11, (c) LP41, (d) LP22, (e) LP32, (f) LP61, (g) LP42, (h) LP04. The LP33 mode is found to appear in two nondegenerate orientations (i) and (k). Modal fields (m) and (n) cannot be assigned to an LPpm counterpart in a capillary. The following modes (not included here) were also excited: LP21, LP02, LP31, LP12, LP03, LP51, LP71, LP81, and several others which could not be recognized as LPpm modes.

Fig. 5.
Fig. 5.

Power measured at the fiber end-face while varying the in-coupling angle. Each peak corresponds to the indicated mode. Media 1 shows the near-field intensity distribution at the fiber end-face for an angle scan from 10.5° to 11.85°. The propagation length after side-coupling was L=11cm, so that the HOMs featuring very high transmission losses were already too damped to be detectable.

Fig. 6.
Fig. 6.

Modal phase indices of the modes excited in the kagomé HC-PCF: experiment (red dots), analytical estimations based on Eq. (1) following the MSM (green triangles), and FEM (blue crosses). Modes are sorted by their modal indices. The letter labels refer to the corresponding modes shown in Fig. 4. The standard deviation of the measurements is estimated to be Δn=±0.0002. The inset shows the idealized kagomé structure employed for the FEM and, as an example, the simulated mode field of the LP33 [Fig. 4(k)].

Fig. 7.
Fig. 7.

Transmission loss of HOMs of the kagomé-PCF, excited either with an SLM (green dots) or via side-coupling (blue squares). Orientation of the LP33 is that given in Fig. 4(i). Error bars denote 95% confidence intervals. The red vertical line indicates the first (i.e., highest modal index) cladding-hole resonance with a measured modal index of nmax/nair=0.9975. The inset shows a quarter of the intensity distribution, excited by side-coupling, overlaid onto an SEM of the fiber structure.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

npm=nco2(λupm2πa)2,
αair=cos1{nSi/ncocos[cos1(npm/nSi)+αw]}αw,

Metrics