Abstract

In this Letter, we demonstrate a single-mode continuous-wave fiber laser amplifier emitting 146 W of average output power at a wavelength of 1009 nm. The wavelength and bandwidth of the seed oscillator are defined by a pair of fiber Bragg gratings. The seed is amplified in a two-stage ytterbium-doped rod-type amplifier to 146 W with a high slope efficiency of 64%, showing excellent beam quality and stability throughout the experiment. The ASE suppression is as high as 63 dB.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Jauregui, J. Limpert, and A. Tünnermann, Nat. Photonics 7, 861 (2013).
    [Crossref]
  2. C. Jauregui, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, Opt. Express 21, 19375 (2013).
    [Crossref]
  3. R. Royon, J. Lhermite, L. Sarger, and E. Cormier, Opt. Express 21, 13818 (2013).
    [Crossref]
  4. J. Hu, L. Zhang, H. Liu, K. Liu, Z. Xu, and Y. Feng, Opt. Express 21, 30958 (2013).
    [Crossref]
  5. R. Steinborn, A. Koglbauer, P. Bachor, T. Diehl, D. Kolbe, M. Stappel, and J. Walz, Opt. Express 21, 22693 (2013).
    [Crossref]
  6. V. Gapontsev, V. Fomin, A. Ferin, and M. Abramov, in Advanced Solid-State Photonics, OSA Technical Digest Series (Optical Society of America, 2010), paper AWA1.
  7. C. Wirth, O. Schmidt, A. Kliner, T. Schreiber, R. Eberhardt, and A. Tunnermann, Opt. Lett. 36, 3061 (2011).
    [Crossref]
  8. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, IEEE J. Quantum Electron. 33, 1049 (1997).
    [Crossref]
  9. J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, Light Sci. Appl. 1, e8 (2012).
    [Crossref]
  10. Simulations done using propagation code of fiberdesk, www.fiberdesk.com .
  11. C. Gaida, F. Stutzki, F. Jansen, H. Otto, T. Eidam, C. Jauregui, O. de Vries, J. Limpert, and A. Tünnermann, Opt. Lett. 39, 209 (2014).
    [Crossref]

2014 (1)

2013 (5)

2012 (1)

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, Light Sci. Appl. 1, e8 (2012).
[Crossref]

2011 (1)

1997 (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, IEEE J. Quantum Electron. 33, 1049 (1997).
[Crossref]

Abramov, M.

V. Gapontsev, V. Fomin, A. Ferin, and M. Abramov, in Advanced Solid-State Photonics, OSA Technical Digest Series (Optical Society of America, 2010), paper AWA1.

Bachor, P.

Cormier, E.

de Vries, O.

Diehl, T.

Eberhardt, R.

Eidam, T.

C. Gaida, F. Stutzki, F. Jansen, H. Otto, T. Eidam, C. Jauregui, O. de Vries, J. Limpert, and A. Tünnermann, Opt. Lett. 39, 209 (2014).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, Light Sci. Appl. 1, e8 (2012).
[Crossref]

Feng, Y.

Ferin, A.

V. Gapontsev, V. Fomin, A. Ferin, and M. Abramov, in Advanced Solid-State Photonics, OSA Technical Digest Series (Optical Society of America, 2010), paper AWA1.

Fomin, V.

V. Gapontsev, V. Fomin, A. Ferin, and M. Abramov, in Advanced Solid-State Photonics, OSA Technical Digest Series (Optical Society of America, 2010), paper AWA1.

Gaida, C.

Gapontsev, V.

V. Gapontsev, V. Fomin, A. Ferin, and M. Abramov, in Advanced Solid-State Photonics, OSA Technical Digest Series (Optical Society of America, 2010), paper AWA1.

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, IEEE J. Quantum Electron. 33, 1049 (1997).
[Crossref]

Hu, J.

Jansen, F.

Jauregui, C.

C. Gaida, F. Stutzki, F. Jansen, H. Otto, T. Eidam, C. Jauregui, O. de Vries, J. Limpert, and A. Tünnermann, Opt. Lett. 39, 209 (2014).
[Crossref]

C. Jauregui, J. Limpert, and A. Tünnermann, Nat. Photonics 7, 861 (2013).
[Crossref]

C. Jauregui, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, Opt. Express 21, 19375 (2013).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, Light Sci. Appl. 1, e8 (2012).
[Crossref]

Kliner, A.

Koglbauer, A.

Kolbe, D.

Lhermite, J.

Limpert, J.

C. Gaida, F. Stutzki, F. Jansen, H. Otto, T. Eidam, C. Jauregui, O. de Vries, J. Limpert, and A. Tünnermann, Opt. Lett. 39, 209 (2014).
[Crossref]

C. Jauregui, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, Opt. Express 21, 19375 (2013).
[Crossref]

C. Jauregui, J. Limpert, and A. Tünnermann, Nat. Photonics 7, 861 (2013).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, Light Sci. Appl. 1, e8 (2012).
[Crossref]

Liu, H.

Liu, K.

Nilsson, J.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, IEEE J. Quantum Electron. 33, 1049 (1997).
[Crossref]

Otto, H.

Otto, H.-J.

C. Jauregui, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, Opt. Express 21, 19375 (2013).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, Light Sci. Appl. 1, e8 (2012).
[Crossref]

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, IEEE J. Quantum Electron. 33, 1049 (1997).
[Crossref]

Royon, R.

Sarger, L.

Schmidt, O.

Schreiber, T.

Stappel, M.

Steinborn, R.

Stutzki, F.

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, IEEE J. Quantum Electron. 33, 1049 (1997).
[Crossref]

Tunnermann, A.

Tünnermann, A.

C. Gaida, F. Stutzki, F. Jansen, H. Otto, T. Eidam, C. Jauregui, O. de Vries, J. Limpert, and A. Tünnermann, Opt. Lett. 39, 209 (2014).
[Crossref]

C. Jauregui, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, Opt. Express 21, 19375 (2013).
[Crossref]

C. Jauregui, J. Limpert, and A. Tünnermann, Nat. Photonics 7, 861 (2013).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, Light Sci. Appl. 1, e8 (2012).
[Crossref]

Walz, J.

Wirth, C.

Xu, Z.

Zhang, L.

IEEE J. Quantum Electron. (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, IEEE J. Quantum Electron. 33, 1049 (1997).
[Crossref]

Light Sci. Appl. (1)

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, Light Sci. Appl. 1, e8 (2012).
[Crossref]

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tünnermann, Nat. Photonics 7, 861 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Other (2)

Simulations done using propagation code of fiberdesk, www.fiberdesk.com .

V. Gapontsev, V. Fomin, A. Ferin, and M. Abramov, in Advanced Solid-State Photonics, OSA Technical Digest Series (Optical Society of America, 2010), paper AWA1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of the fiber oscillator. FBG1 and FBG2 are fiber Bragg gratings with 99% and 20% reflectivity at 1009 nm and a spectral bandwidth of approximately 1 and 0.15 nm, respectively. SMLD, single mode laser diode; WDM, wavelength division multiplexer.

Fig. 2.
Fig. 2.

Setup of the two amplifier stages based on LPFs with a length of 1.1 m.

Fig. 3.
Fig. 3.

Measured output power over the launched pump power (slope efficiency approximately 64%).

Fig. 4.
Fig. 4.

Spectral intensity distribution measured at 146 W of average output power compared with the simulation.

Fig. 5.
Fig. 5.

Simulated output power (excluding ASE) for various fiber lengths at 1009 and 1030 nm seed wavelength for a given seed power of 10 W and a pump power of 245 W at 976 nm.

Fig. 6.
Fig. 6.

Small signal gain in the main amplifier LPF as a function of the signal wavelength.

Fig. 7.
Fig. 7.

Simulated output power as a function of the seed power for a given pump power of 245 W and a fiber length of 1.1 m for two seed wavelengths (1009 and 1030 nm).

Metrics