Abstract

We show that the upconversion emission spectra of Tm3+ and Yb3+ codoped β-NaYF4NaYF4 core-shell nanoparticles can be judiciously modified by means of plasmonic nanocavities. Our analysis indicates that more than a 30-fold increase in conversion efficiency to the UV spectral band can be expected by engineering the NIR absorption and the local density of states. The effect of the nanocavity on the resulting radiation patterns is discussed. Our results are exemplified in cylindrical cavity geometries.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Bloembergen, Phys. Rev. Lett. 2, 84 (1959).
    [CrossRef]
  2. F. Auzel, Chem. Rev. 104, 139 (2004).
    [CrossRef]
  3. F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, C. Xueyuan, and X. Liu, Nat. Mater. 10, 968 (2011).
    [CrossRef]
  4. F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, Analyst 135, 1839 (2010).
    [CrossRef]
  5. S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, J. Appl. Phys. 108, 044912 (2010).
    [CrossRef]
  6. S. Schietinger, T. Aichele, H. Q. Wang, T. Nann, and O. Benson, Nano Lett. 10, 134 (2010).
    [CrossRef]
  7. Q. C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, Nano Lett. 14, 101 (2014).
    [CrossRef]
  8. H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, Angew. Chem., Int. Ed. Engl. 49, 2865 (2010).
    [CrossRef]
  9. A. Shalav, B. S. Richards, and M. A. Green, Sol. Energy Mater. Sol. Cells 91, 829 (2007).
    [CrossRef]
  10. E. M. Purcell, Phys. Rev. 69, 829 (1946).
  11. S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, J. Appl. Phys. 111, 013109 (2012).
    [CrossRef]
  12. S. E. Ivanova, A. M. Tkachuk, A. Mirzaeva, and F. Pellé, Opt. Spectrosc. 105, 228 (2008).
    [CrossRef]
  13. Q. Nie, X. Li, S. Dai, T. Xu, Z. Jin, and X. Zhang, J. Lumin. 128, 135 (2008).
    [CrossRef]
  14. M. L. Viger, M. Grossman, N. Fomina, and A. Almutairi, Adv. Mater. 25, 3733 (2013).
    [CrossRef]

2014

Q. C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, Nano Lett. 14, 101 (2014).
[CrossRef]

2013

M. L. Viger, M. Grossman, N. Fomina, and A. Almutairi, Adv. Mater. 25, 3733 (2013).
[CrossRef]

2012

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, J. Appl. Phys. 111, 013109 (2012).
[CrossRef]

2011

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, C. Xueyuan, and X. Liu, Nat. Mater. 10, 968 (2011).
[CrossRef]

2010

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, Analyst 135, 1839 (2010).
[CrossRef]

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, J. Appl. Phys. 108, 044912 (2010).
[CrossRef]

S. Schietinger, T. Aichele, H. Q. Wang, T. Nann, and O. Benson, Nano Lett. 10, 134 (2010).
[CrossRef]

H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, Angew. Chem., Int. Ed. Engl. 49, 2865 (2010).
[CrossRef]

2008

S. E. Ivanova, A. M. Tkachuk, A. Mirzaeva, and F. Pellé, Opt. Spectrosc. 105, 228 (2008).
[CrossRef]

Q. Nie, X. Li, S. Dai, T. Xu, Z. Jin, and X. Zhang, J. Lumin. 128, 135 (2008).
[CrossRef]

2007

A. Shalav, B. S. Richards, and M. A. Green, Sol. Energy Mater. Sol. Cells 91, 829 (2007).
[CrossRef]

2004

F. Auzel, Chem. Rev. 104, 139 (2004).
[CrossRef]

1959

N. Bloembergen, Phys. Rev. Lett. 2, 84 (1959).
[CrossRef]

1946

E. M. Purcell, Phys. Rev. 69, 829 (1946).

Aichele, T.

S. Schietinger, T. Aichele, H. Q. Wang, T. Nann, and O. Benson, Nano Lett. 10, 134 (2010).
[CrossRef]

Almutairi, A.

M. L. Viger, M. Grossman, N. Fomina, and A. Almutairi, Adv. Mater. 25, 3733 (2013).
[CrossRef]

Auzel, F.

F. Auzel, Chem. Rev. 104, 139 (2004).
[CrossRef]

Banerjee, D.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, Analyst 135, 1839 (2010).
[CrossRef]

Bauer, G. H.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, J. Appl. Phys. 108, 044912 (2010).
[CrossRef]

Benson, O.

S. Schietinger, T. Aichele, H. Q. Wang, T. Nann, and O. Benson, Nano Lett. 10, 134 (2010).
[CrossRef]

Biner, D.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, J. Appl. Phys. 108, 044912 (2010).
[CrossRef]

Bloembergen, N.

N. Bloembergen, Phys. Rev. Lett. 2, 84 (1959).
[CrossRef]

Brüggemann, R.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, J. Appl. Phys. 108, 044912 (2010).
[CrossRef]

Chen, X.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, Analyst 135, 1839 (2010).
[CrossRef]

Dai, S.

Q. Nie, X. Li, S. Dai, T. Xu, Z. Jin, and X. Zhang, J. Lumin. 128, 135 (2008).
[CrossRef]

Deng, R.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, C. Xueyuan, and X. Liu, Nat. Mater. 10, 968 (2011).
[CrossRef]

Duan, X.

H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, Angew. Chem., Int. Ed. Engl. 49, 2865 (2010).
[CrossRef]

Fischer, S.

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, J. Appl. Phys. 111, 013109 (2012).
[CrossRef]

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, J. Appl. Phys. 108, 044912 (2010).
[CrossRef]

Fomina, N.

M. L. Viger, M. Grossman, N. Fomina, and A. Almutairi, Adv. Mater. 25, 3733 (2013).
[CrossRef]

Glunz, S. W.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, J. Appl. Phys. 108, 044912 (2010).
[CrossRef]

Goldschmidt, J. C.

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, J. Appl. Phys. 111, 013109 (2012).
[CrossRef]

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, J. Appl. Phys. 108, 044912 (2010).
[CrossRef]

Green, M. A.

A. Shalav, B. S. Richards, and M. A. Green, Sol. Energy Mater. Sol. Cells 91, 829 (2007).
[CrossRef]

Grossman, M.

M. L. Viger, M. Grossman, N. Fomina, and A. Almutairi, Adv. Mater. 25, 3733 (2013).
[CrossRef]

Han, Y.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, C. Xueyuan, and X. Liu, Nat. Mater. 10, 968 (2011).
[CrossRef]

Hermle, M.

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, J. Appl. Phys. 111, 013109 (2012).
[CrossRef]

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, J. Appl. Phys. 108, 044912 (2010).
[CrossRef]

Huang, Y.

H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, Angew. Chem., Int. Ed. Engl. 49, 2865 (2010).
[CrossRef]

Ivanov, I. A.

H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, Angew. Chem., Int. Ed. Engl. 49, 2865 (2010).
[CrossRef]

Ivanova, S. E.

S. E. Ivanova, A. M. Tkachuk, A. Mirzaeva, and F. Pellé, Opt. Spectrosc. 105, 228 (2008).
[CrossRef]

Jin, Z.

Q. Nie, X. Li, S. Dai, T. Xu, Z. Jin, and X. Zhang, J. Lumin. 128, 135 (2008).
[CrossRef]

Krämer, K.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, J. Appl. Phys. 108, 044912 (2010).
[CrossRef]

Li, X.

Q. Nie, X. Li, S. Dai, T. Xu, Z. Jin, and X. Zhang, J. Lumin. 128, 135 (2008).
[CrossRef]

Li, Y.

H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, Angew. Chem., Int. Ed. Engl. 49, 2865 (2010).
[CrossRef]

Liu, X.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, C. Xueyuan, and X. Liu, Nat. Mater. 10, 968 (2011).
[CrossRef]

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, Analyst 135, 1839 (2010).
[CrossRef]

Liu, Y.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, Analyst 135, 1839 (2010).
[CrossRef]

Löper, P.

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, J. Appl. Phys. 111, 013109 (2012).
[CrossRef]

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, J. Appl. Phys. 108, 044912 (2010).
[CrossRef]

Mirzaeva, A.

S. E. Ivanova, A. M. Tkachuk, A. Mirzaeva, and F. Pellé, Opt. Spectrosc. 105, 228 (2008).
[CrossRef]

Mundoor, H.

Q. C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, Nano Lett. 14, 101 (2014).
[CrossRef]

Nagpal, P.

Q. C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, Nano Lett. 14, 101 (2014).
[CrossRef]

Nann, T.

S. Schietinger, T. Aichele, H. Q. Wang, T. Nann, and O. Benson, Nano Lett. 10, 134 (2010).
[CrossRef]

Nie, Q.

Q. Nie, X. Li, S. Dai, T. Xu, Z. Jin, and X. Zhang, J. Lumin. 128, 135 (2008).
[CrossRef]

Pellé, F.

S. E. Ivanova, A. M. Tkachuk, A. Mirzaeva, and F. Pellé, Opt. Spectrosc. 105, 228 (2008).
[CrossRef]

Purcell, E. M.

E. M. Purcell, Phys. Rev. 69, 829 (1946).

Qu, Y.

H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, Angew. Chem., Int. Ed. Engl. 49, 2865 (2010).
[CrossRef]

Ribot, J. C.

Q. C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, Nano Lett. 14, 101 (2014).
[CrossRef]

Richards, B. S.

A. Shalav, B. S. Richards, and M. A. Green, Sol. Energy Mater. Sol. Cells 91, 829 (2007).
[CrossRef]

Schietinger, S.

S. Schietinger, T. Aichele, H. Q. Wang, T. Nann, and O. Benson, Nano Lett. 10, 134 (2010).
[CrossRef]

Shalav, A.

A. Shalav, B. S. Richards, and M. A. Green, Sol. Energy Mater. Sol. Cells 91, 829 (2007).
[CrossRef]

Singh, V.

Q. C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, Nano Lett. 14, 101 (2014).
[CrossRef]

Smalyukh, I. I.

Q. C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, Nano Lett. 14, 101 (2014).
[CrossRef]

Steinkemper, H.

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, J. Appl. Phys. 111, 013109 (2012).
[CrossRef]

Sun, Q. C.

Q. C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, Nano Lett. 14, 101 (2014).
[CrossRef]

Tkachuk, A. M.

S. E. Ivanova, A. M. Tkachuk, A. Mirzaeva, and F. Pellé, Opt. Spectrosc. 105, 228 (2008).
[CrossRef]

Viger, M. L.

M. L. Viger, M. Grossman, N. Fomina, and A. Almutairi, Adv. Mater. 25, 3733 (2013).
[CrossRef]

Wang, F.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, C. Xueyuan, and X. Liu, Nat. Mater. 10, 968 (2011).
[CrossRef]

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, Analyst 135, 1839 (2010).
[CrossRef]

Wang, H. Q.

S. Schietinger, T. Aichele, H. Q. Wang, T. Nann, and O. Benson, Nano Lett. 10, 134 (2010).
[CrossRef]

Wang, J.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, C. Xueyuan, and X. Liu, Nat. Mater. 10, 968 (2011).
[CrossRef]

Wang, Q.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, C. Xueyuan, and X. Liu, Nat. Mater. 10, 968 (2011).
[CrossRef]

Xu, T.

Q. Nie, X. Li, S. Dai, T. Xu, Z. Jin, and X. Zhang, J. Lumin. 128, 135 (2008).
[CrossRef]

Xueyuan, C.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, C. Xueyuan, and X. Liu, Nat. Mater. 10, 968 (2011).
[CrossRef]

Zhang, H.

H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, Angew. Chem., Int. Ed. Engl. 49, 2865 (2010).
[CrossRef]

Zhang, X.

Q. Nie, X. Li, S. Dai, T. Xu, Z. Jin, and X. Zhang, J. Lumin. 128, 135 (2008).
[CrossRef]

Zhu, H.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, C. Xueyuan, and X. Liu, Nat. Mater. 10, 968 (2011).
[CrossRef]

Adv. Mater.

M. L. Viger, M. Grossman, N. Fomina, and A. Almutairi, Adv. Mater. 25, 3733 (2013).
[CrossRef]

Analyst

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, Analyst 135, 1839 (2010).
[CrossRef]

Angew. Chem., Int. Ed. Engl.

H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, Angew. Chem., Int. Ed. Engl. 49, 2865 (2010).
[CrossRef]

Chem. Rev.

F. Auzel, Chem. Rev. 104, 139 (2004).
[CrossRef]

J. Appl. Phys.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, J. Appl. Phys. 108, 044912 (2010).
[CrossRef]

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, J. Appl. Phys. 111, 013109 (2012).
[CrossRef]

J. Lumin.

Q. Nie, X. Li, S. Dai, T. Xu, Z. Jin, and X. Zhang, J. Lumin. 128, 135 (2008).
[CrossRef]

Nano Lett.

S. Schietinger, T. Aichele, H. Q. Wang, T. Nann, and O. Benson, Nano Lett. 10, 134 (2010).
[CrossRef]

Q. C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, Nano Lett. 14, 101 (2014).
[CrossRef]

Nat. Mater.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, C. Xueyuan, and X. Liu, Nat. Mater. 10, 968 (2011).
[CrossRef]

Opt. Spectrosc.

S. E. Ivanova, A. M. Tkachuk, A. Mirzaeva, and F. Pellé, Opt. Spectrosc. 105, 228 (2008).
[CrossRef]

Phys. Rev.

E. M. Purcell, Phys. Rev. 69, 829 (1946).

Phys. Rev. Lett.

N. Bloembergen, Phys. Rev. Lett. 2, 84 (1959).
[CrossRef]

Sol. Energy Mater. Sol. Cells

A. Shalav, B. S. Richards, and M. A. Green, Sol. Energy Mater. Sol. Cells 91, 829 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the nanocavity containing UC β-phase NaYF4: Yb3+, Tm3+NaYF4 core-shell nanoparticles.

Fig. 2.
Fig. 2.

Normalized absorbed power density (watt per volume) at a wavelength of 980 nm (NIR) in the polymer region by (a) UCNPs embedded in a bare cylindrical cavity. (b) The same structure when surrounded by an aluminum ring with a thickness of 50 nm as depicted in Fig. 1.

Fig. 3.
Fig. 3.

Enhancement factor of the LDOS for UCNPs embedded in a bare polymer cylindrical cavity (dashed line) and for the same structure when surrounded by an aluminum ring with a thickness of 50 nm (solid line). ρb and ρc are the LDOSs in the bulk and in the cavity, respectively.

Fig. 4.
Fig. 4.

Spectrum of the NaYF4: Tm3+, Yb3+ UCNP. The dotted line represents the luminescence spectrum of UCNPs in a polymer rod, while the solid line depicts the luminescence spectrum of UCNPs in the aluminum-tubed nanocavity of Fig. 1. The inset shows the full spectrum (340–1840 nm). Below 700 nm, the emission is magnified by an order of magnitude to facilitate visual comparisons.

Fig. 5.
Fig. 5.

Confined electromagnetic mode in the UCNP-polymer system surrounded by an aluminum tube. The cavity supports a plasmonic mode with a quality factor of 21 at UV (360 nm). The side and top views (taken at the center) of the |Enorm|2 of the UV mode are depicted in (a) and (b), respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Pif(r⃗,ωif)=2π|Mif|2ρ(r⃗,ωif),
n˙=(MGSA+MESA+MSTE+MMP+MSPE)n+[ET],

Metrics