Abstract

We show that the upconversion emission spectra of Tm3+ and Yb3+ codoped β-NaYF4NaYF4 core-shell nanoparticles can be judiciously modified by means of plasmonic nanocavities. Our analysis indicates that more than a 30-fold increase in conversion efficiency to the UV spectral band can be expected by engineering the NIR absorption and the local density of states. The effect of the nanocavity on the resulting radiation patterns is discussed. Our results are exemplified in cylindrical cavity geometries.

© 2014 Optical Society of America

Full Article  |  PDF Article
Related Articles
Enhanced broadband near-infrared luminescence from transparent Yb3+/Ni2+ codoped silicate glass ceramics

Botao Wu, Shifeng Zhou, Jian Ruan, Yanbo Qiao, Danping Chen, Congshan Zhu, and Jianrong Qiu
Opt. Express 16(3) 1879-1884 (2008)

Increased upconversion quantum yield in photonic structures due to local field enhancement and modification of the local density of states – a simulation-based analysis

Barbara Herter, Sebastian Wolf, Stefan Fischer, Johannes Gutmann, Benedikt Bläsi, and Jan Christoph Goldschmidt
Opt. Express 21(S5) A883-A900 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription