Abstract

The dark-line defect problem in the conventional polygon computer-generated hologram (CGH) is addressed. To resolve this problem, we clarify the physical origin of the defect and address the concept of phase-regularization. A novel synthesis algorithm for a phase-regularized polygon CGH for generating photorealistic defect-free holographic images is proposed. The optical reconstruction results of the phase-regularized polygon CGHs without the dark-line defects are presented.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, Sci. Rep. 4, 4000 (2014).
    [CrossRef]
  2. B. Lee, Phys. Today 66(4), 36 (2013).
    [CrossRef]
  3. J. Hong, Y. Kim, H. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, Appl. Opt. 50, H87 (2011).
    [CrossRef]
  4. L. Onural, F. Yaras, and H. Kang, Proc. IEEE 99, 576 (2011).
    [CrossRef]
  5. N. Takada, T. Shimobaba, H. Nakayama, A. Shiraki, N. Okada, M. Oikawa, N. Masuda, and T. Ito, Appl. Opt. 51, 7303 (2012).
    [CrossRef]
  6. T. Shimobaba, T. Ito, N. Masuda, Y. Ichihashi, and N. Takada, Opt. Express 18, 9955 (2010).
    [CrossRef]
  7. H. Kim, J. Hahn, and B. Lee, Appl. Opt. 47, D117 (2008).
    [CrossRef]
  8. J. Cho, J. Hahn, and H. Kim, Opt. Express 20, 28282 (2012).
    [CrossRef]
  9. K. Matsushima and S. Nakahara, Appl. Opt. 48, H54 (2009).
    [CrossRef]
  10. K. Matsushima, H. Nishi, and S. Nakahara, J. Electron. Imaging 21, 023002 (2012).
    [CrossRef]
  11. H. Nishi, K. Matsushima, and S. Nakahara, Appl. Opt. 50, H245 (2011).
    [CrossRef]
  12. K. Matsushima, Appl. Opt. 44, 4607 (2005).
    [CrossRef]
  13. T. Ichikawa, K. Yamaguchi, and Y. Sakamoto, Appl. Opt. 52, A201 (2013).
    [CrossRef]
  14. E. Moon, M. Kim, J. Roh, H. Kim, and J. Hahn, Opt. Express 22, 6526 (2014).
    [CrossRef]

2014

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, Sci. Rep. 4, 4000 (2014).
[CrossRef]

E. Moon, M. Kim, J. Roh, H. Kim, and J. Hahn, Opt. Express 22, 6526 (2014).
[CrossRef]

2013

2012

2011

2010

2009

2008

2005

Chen, N.

Cho, J.

Choi, H.

Hahn, J.

Hong, J.

Ichihashi, Y.

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, Sci. Rep. 4, 4000 (2014).
[CrossRef]

T. Shimobaba, T. Ito, N. Masuda, Y. Ichihashi, and N. Takada, Opt. Express 18, 9955 (2010).
[CrossRef]

Ichikawa, T.

Ito, T.

Kang, H.

L. Onural, F. Yaras, and H. Kang, Proc. IEEE 99, 576 (2011).
[CrossRef]

Kim, H.

Kim, M.

Kim, Y.

Lee, B.

Masuda, N.

Matsushima, K.

Min, S.-W.

Moon, E.

Nakahara, S.

Nakayama, H.

Nishi, H.

K. Matsushima, H. Nishi, and S. Nakahara, J. Electron. Imaging 21, 023002 (2012).
[CrossRef]

H. Nishi, K. Matsushima, and S. Nakahara, Appl. Opt. 50, H245 (2011).
[CrossRef]

Oikawa, M.

Okada, N.

Onural, L.

L. Onural, F. Yaras, and H. Kang, Proc. IEEE 99, 576 (2011).
[CrossRef]

Park, J.-H.

Roh, J.

Sakamoto, Y.

Sasaki, H.

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, Sci. Rep. 4, 4000 (2014).
[CrossRef]

Senoh, T.

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, Sci. Rep. 4, 4000 (2014).
[CrossRef]

Shimobaba, T.

Shiraki, A.

Takada, N.

Yamaguchi, K.

Yamamoto, K.

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, Sci. Rep. 4, 4000 (2014).
[CrossRef]

Yaras, F.

L. Onural, F. Yaras, and H. Kang, Proc. IEEE 99, 576 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Dark-line defects observed in (a) numerical and (b) experimental reconstructions of a holographic 3D image calculated by the conventional polygon CGH method.

Fig. 2.
Fig. 2.

Concept of phase-regularization. (a) Piecewise continuity with an abrupt change in the wavefront accompanies wide-angle edge diffraction, inducing the dark-line defect. In contrast, an optical wave with a smoothly rendered wavefront can depress the edge diffraction and therefore does not induce dark-line defects in the holographic image as captured in the retina image. (b) The wavefront alignment in the retina space should also be considered.

Fig. 3.
Fig. 3.

(a) Optical system schematic of the eye observation of a holographic 3D image and (b) experimental setup of the holographic 3D display.

Fig. 4.
Fig. 4.

3D object generated by polygon CGH with phase-regularization (a) numerical simulation result and (b) experimental observation result.

Fig. 5.
Fig. 5.

Off-axis amplitude CGH pattern.

Fig. 6.
Fig. 6.

Comparison of the numerical and experimental observation results of a holographic 3D object when focused on its rear (a) and front (b).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

feye=1/[1/(Fzcenter)+1/deye],
(xretina,yretina,zretina)=(xobjectD2/D1,yobjectD2/D1,D2deye),
W(u,v;λ)=FrT1(G(x1,y1)).
F(x2,y2;λ)=FrT2(t(u,v;λ)W(u,v)).
W(u,v;λ)=ejkFjλFG(x1,y1)ej2πλF(x1u+y1v)dx1dy1.
F(x2,y2;λ)=ejπλdeye(x22+y22)(jλF)(jλdeye)t(u,v)W(u,v)ej2πλdeye(ux2+vy2)dudv,
t(u,v;λ)=Aejπλ(1F+1deye1feye)(u2+v2)circ([u2+v2]/ρ2).
G(x1,y1)=IFrT1(t1(u,v;λ)IFrT2(F(x2,y2;λ))),
t1(u,v;λ)=ejπλ(1F+1deye1feye)(u2+v2).

Metrics