Abstract

A method for retrieving low-coherence interferograms, based on the use of a microwave photonics filter, is proposed and demonstrated. The method is equivalent to the double-interferometer technique, with the scanning interferometer replaced by an analog fiber-optics link and the visibility recorded as the amplitude of its radio-frequency (RF) response. As a low-coherence interferometry system, it shows a decrease of resolution induced by the fiber’s third-order dispersion (β3). As a displacement sensor, it provides highly linear and slope-scalable readouts of the interferometer’s optical path difference in terms of RF, even in the presence of third-order dispersion. In a proof-of-concept experiment, we demonstrate 20-μm displacement readouts using C-band EDFA sources and standard single-mode fiber.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Derickson, Fiber-Optic Test and Measurement (Prentice-Hall, 1998).
  2. R. C. Youngquist, S. Carr, and D. E. N. Davies, Opt. Lett. 12, 158 (1987).
    [CrossRef]
  3. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, Rep. Prog. Phys. 66, 239 (2003).
    [CrossRef]
  4. Y.-J. Rao and D. A. Jackson, Meas. Sci. Technol. 7, 981 (1996).
    [CrossRef]
  5. A. Koch and R. Ulrich, Sens. Actuators A 25, 201 (1991).
  6. D. Inaudi, A. Elamari, L. Pflug, N. Gisin, J. Breguet, and S. Vurpillot, Sens. Actuators A 44, 125 (1994).
  7. S. Iezekiel, Microwave Photonics: Devices and Applications (Wiley, 2009).
  8. J. Mora, B. Ortega, A. Díez, J. L. Cruz, M. Andrés, and J. Capmany, J. Lightwave Technol. 24, 2500 (2006).
    [CrossRef]
  9. X. Dong, L.-Y. Shao, H. Fu, H. Y. Tam, and C. Lu, Opt. Lett. 33, 482 (2008).
    [CrossRef]
  10. T. Wei, J. Huang, X. Lan, Q. Han, and H. Xiao, Opt. Lett. 37, 647 (2012).
    [CrossRef]
  11. A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, Opt. Express 21, 28175 (2013).
    [CrossRef]
  12. G. Van Engen, S. A. Diddams, and T. S. Clement, Appl. Opt. 37, 5679 (1998).
    [CrossRef]
  13. A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, Opt. Express 9, 610 (2001).
    [CrossRef]
  14. H. Gouraud, P. di Bin, L. Billonnet, B. Jarry, E. Lecroizier, M. Barge, and J.-L. de Bougrenet de la Tocnaye, Microw. Opt. Technol. Lett. 48, 562 (2006).
    [CrossRef]
  15. S. Wakabayashi, A. Baba, A. Itou, and J. Adachi, J. Opt. Soc. Am. B 25, 210 (2008).
    [CrossRef]
  16. L. Li, X. Yi, T. X. H. Huang, and R. Minasian, IEEE Photon. Technol. Lett. 26, 82 (2014).
  17. G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theory Tech. 45, 1410 (1997).
  18. C. R. Fernández-Pousa, H. Maestre, A. J. Torregrosa, and J. Capmany, J. Opt. Soc. Am. B 25, 1242 (2008).
    [CrossRef]

2014 (1)

L. Li, X. Yi, T. X. H. Huang, and R. Minasian, IEEE Photon. Technol. Lett. 26, 82 (2014).

2013 (1)

2012 (1)

2008 (3)

2006 (2)

J. Mora, B. Ortega, A. Díez, J. L. Cruz, M. Andrés, and J. Capmany, J. Lightwave Technol. 24, 2500 (2006).
[CrossRef]

H. Gouraud, P. di Bin, L. Billonnet, B. Jarry, E. Lecroizier, M. Barge, and J.-L. de Bougrenet de la Tocnaye, Microw. Opt. Technol. Lett. 48, 562 (2006).
[CrossRef]

2003 (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, Rep. Prog. Phys. 66, 239 (2003).
[CrossRef]

2001 (1)

1998 (1)

1997 (1)

G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theory Tech. 45, 1410 (1997).

1996 (1)

Y.-J. Rao and D. A. Jackson, Meas. Sci. Technol. 7, 981 (1996).
[CrossRef]

1994 (1)

D. Inaudi, A. Elamari, L. Pflug, N. Gisin, J. Breguet, and S. Vurpillot, Sens. Actuators A 44, 125 (1994).

1991 (1)

A. Koch and R. Ulrich, Sens. Actuators A 25, 201 (1991).

1987 (1)

Adachi, J.

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theory Tech. 45, 1410 (1997).

Andrés, M.

Baba, A.

Barge, M.

H. Gouraud, P. di Bin, L. Billonnet, B. Jarry, E. Lecroizier, M. Barge, and J.-L. de Bougrenet de la Tocnaye, Microw. Opt. Technol. Lett. 48, 562 (2006).
[CrossRef]

Barrera, D.

Billonnet, L.

H. Gouraud, P. di Bin, L. Billonnet, B. Jarry, E. Lecroizier, M. Barge, and J.-L. de Bougrenet de la Tocnaye, Microw. Opt. Technol. Lett. 48, 562 (2006).
[CrossRef]

Breguet, J.

D. Inaudi, A. Elamari, L. Pflug, N. Gisin, J. Breguet, and S. Vurpillot, Sens. Actuators A 44, 125 (1994).

Capmany, J.

Carr, S.

Clement, T. S.

Cruz, J. L.

Davies, D. E. N.

de Bougrenet de la Tocnaye, J.-L.

H. Gouraud, P. di Bin, L. Billonnet, B. Jarry, E. Lecroizier, M. Barge, and J.-L. de Bougrenet de la Tocnaye, Microw. Opt. Technol. Lett. 48, 562 (2006).
[CrossRef]

Derickson, D.

D. Derickson, Fiber-Optic Test and Measurement (Prentice-Hall, 1998).

di Bin, P.

H. Gouraud, P. di Bin, L. Billonnet, B. Jarry, E. Lecroizier, M. Barge, and J.-L. de Bougrenet de la Tocnaye, Microw. Opt. Technol. Lett. 48, 562 (2006).
[CrossRef]

Diddams, S. A.

Díez, A.

Dong, X.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, Rep. Prog. Phys. 66, 239 (2003).
[CrossRef]

Elamari, A.

D. Inaudi, A. Elamari, L. Pflug, N. Gisin, J. Breguet, and S. Vurpillot, Sens. Actuators A 44, 125 (1994).

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, Rep. Prog. Phys. 66, 239 (2003).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, Opt. Express 9, 610 (2001).
[CrossRef]

Fernández-Pousa, C. R.

Fu, H.

Gisin, N.

D. Inaudi, A. Elamari, L. Pflug, N. Gisin, J. Breguet, and S. Vurpillot, Sens. Actuators A 44, 125 (1994).

Gouraud, H.

H. Gouraud, P. di Bin, L. Billonnet, B. Jarry, E. Lecroizier, M. Barge, and J.-L. de Bougrenet de la Tocnaye, Microw. Opt. Technol. Lett. 48, 562 (2006).
[CrossRef]

Han, Q.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, Rep. Prog. Phys. 66, 239 (2003).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, Opt. Express 9, 610 (2001).
[CrossRef]

Huang, J.

Huang, T. X. H.

L. Li, X. Yi, T. X. H. Huang, and R. Minasian, IEEE Photon. Technol. Lett. 26, 82 (2014).

Iezekiel, S.

S. Iezekiel, Microwave Photonics: Devices and Applications (Wiley, 2009).

Inaudi, D.

D. Inaudi, A. Elamari, L. Pflug, N. Gisin, J. Breguet, and S. Vurpillot, Sens. Actuators A 44, 125 (1994).

Itou, A.

Jackson, D. A.

Y.-J. Rao and D. A. Jackson, Meas. Sci. Technol. 7, 981 (1996).
[CrossRef]

Jarry, B.

H. Gouraud, P. di Bin, L. Billonnet, B. Jarry, E. Lecroizier, M. Barge, and J.-L. de Bougrenet de la Tocnaye, Microw. Opt. Technol. Lett. 48, 562 (2006).
[CrossRef]

Karamata, B.

Koch, A.

A. Koch and R. Ulrich, Sens. Actuators A 25, 201 (1991).

Lan, X.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, Rep. Prog. Phys. 66, 239 (2003).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, Opt. Express 9, 610 (2001).
[CrossRef]

Lecroizier, E.

H. Gouraud, P. di Bin, L. Billonnet, B. Jarry, E. Lecroizier, M. Barge, and J.-L. de Bougrenet de la Tocnaye, Microw. Opt. Technol. Lett. 48, 562 (2006).
[CrossRef]

Li, L.

L. Li, X. Yi, T. X. H. Huang, and R. Minasian, IEEE Photon. Technol. Lett. 26, 82 (2014).

Lu, C.

Maestre, H.

Minasian, R.

L. Li, X. Yi, T. X. H. Huang, and R. Minasian, IEEE Photon. Technol. Lett. 26, 82 (2014).

Mora, J.

Novak, D.

G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theory Tech. 45, 1410 (1997).

Ortega, B.

Pflug, L.

D. Inaudi, A. Elamari, L. Pflug, N. Gisin, J. Breguet, and S. Vurpillot, Sens. Actuators A 44, 125 (1994).

Rao, Y.-J.

Y.-J. Rao and D. A. Jackson, Meas. Sci. Technol. 7, 981 (1996).
[CrossRef]

Ricchiuti, A. L.

Sales, S.

Shao, L.-Y.

Smith, G. H.

G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theory Tech. 45, 1410 (1997).

Sticker, M.

Tam, H. Y.

Thevenaz, L.

Torregrosa, A. J.

Ulrich, R.

A. Koch and R. Ulrich, Sens. Actuators A 25, 201 (1991).

Van Engen, G.

Vurpillot, S.

D. Inaudi, A. Elamari, L. Pflug, N. Gisin, J. Breguet, and S. Vurpillot, Sens. Actuators A 44, 125 (1994).

Wakabayashi, S.

Wei, T.

Xiao, H.

Yi, X.

L. Li, X. Yi, T. X. H. Huang, and R. Minasian, IEEE Photon. Technol. Lett. 26, 82 (2014).

Youngquist, R. C.

Zawadzki, R.

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

L. Li, X. Yi, T. X. H. Huang, and R. Minasian, IEEE Photon. Technol. Lett. 26, 82 (2014).

IEEE Trans. Microwave Theory Tech. (1)

G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theory Tech. 45, 1410 (1997).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Meas. Sci. Technol. (1)

Y.-J. Rao and D. A. Jackson, Meas. Sci. Technol. 7, 981 (1996).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

H. Gouraud, P. di Bin, L. Billonnet, B. Jarry, E. Lecroizier, M. Barge, and J.-L. de Bougrenet de la Tocnaye, Microw. Opt. Technol. Lett. 48, 562 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, Rep. Prog. Phys. 66, 239 (2003).
[CrossRef]

Sens. Actuators A (2)

A. Koch and R. Ulrich, Sens. Actuators A 25, 201 (1991).

D. Inaudi, A. Elamari, L. Pflug, N. Gisin, J. Breguet, and S. Vurpillot, Sens. Actuators A 44, 125 (1994).

Other (2)

S. Iezekiel, Microwave Photonics: Devices and Applications (Wiley, 2009).

D. Derickson, Fiber-Optic Test and Measurement (Prentice-Hall, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Left: scheme of a double-interferometer LCI system. Right: RF-LCI system. FC, fiber coupler; M, mirror; CL, collimation lens; EOM, electro-optic modulator.

Fig. 2.
Fig. 2.

Optical spectra of the broadband source before (Sin, gray curve) and after spectral slicing (S0, black curve) in the sensor interferometer with a spectral period of 2nm.

Fig. 3.
Fig. 3.

Interferogram of the sliced source (gray curve) and scaled amplitude of the RF response (black curve).

Fig. 4.
Fig. 4.

Normalized response |S21|2 for various values of the OPD. Traces taken with a resolution of 15MHz/point.

Fig. 5.
Fig. 5.

Variation of the resonance’s center frequency with OPD.

Fig. 6.
Fig. 6.

Resonances for consecutive 20-μm variations of the OPD. The traces were taken with a resolution of 5MHz/point. Inset: variation of the center frequency, determined as the resonance’s centroid, with OPD, and linear fit.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

S0(ω)=1/2Sin(ω)(1+cos(2ωn(ω)Δd/c+ξ)),
γ0(τ)=γin(τ)+1/2γin(τ+z/vg)ejξ0+1/2γin(τz/vg)ejξ0,
S21(Ω)dω2πS0(ω)×[H(ω+Ω)H*(ω)+H(ω)H*(ωΩ)],
S21(Ω)dω2πS0(ω)cos(β2(ω)LΩ2/2)×exp[jβ1(ω)LΩjβ3(ω)LΩ3/6],
S21(Ω)cos(β2LΩ2/2)γ0(β2LΩ)exp(jβ1LΩ),
dτγin(τ)dω2πcos(β2(ω)LΩ2/2)×exp(jω(τ0τ)jβ1(ω)LΩjβ3(ω)LΩ3/6),
exp(±jω0z/cjβ1LΩjβ3LΩ3/6±jξ0)cos(β2LΩ2/2)×(1+jβ3σω2Ω)1/2exp(σω2(±z/cβ2LΩ)22(1+jβ3Lσω2Ω))
f0(z)=z1(β3σω/β2)2/22πc|β2|L.
Δz=Δz01+(2πβ3Lσω2f0(z))2=Δz01+(z/L3D)2,

Metrics