Abstract

We propose a convenient method for achieving highly birefringent (HiBi) elliptic microfibers by use of the CO2-laser machining and the flame-brushing techniques. With optimization of fabrication process, a high birefringence of up to 2.10×102 is experimentally obtained. Especially, within a polarization Sagnac interferometer acting as a refractive index (RI) sensor, both positive and abnormal negative sensitivity is measured, dependent on the geometrical variables of the HiBi microfiber. The maximum RI sensitivity is 195,348nm/RI-unit around RI=1.35887, which is the highest among the microfiber devices as reported, to our knowledge.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Noda, K. Okamoto, and Y. Sasaki, J. Lightwave Technol. 4, 1071 (1986).
    [CrossRef]
  2. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, Opt. Express 9, 676 (2001).
    [CrossRef]
  3. Y. M. Jung, G. Brambilla, K. Oh, and D. J. Richardson, Opt. Lett. 35, 378 (2010).
    [CrossRef]
  4. F. Beltran-Mejia, J. H. Osorio, C. R. Biazoli, and C. M. B. Cordeiro, J. Lightwave Technol. 31, 2756 (2013).
    [CrossRef]
  5. J. Li, L. P. Sun, S. Gao, Z. Quan, Y. L. Chang, Y. Ran, L. Jin, and B. O. Guan, Opt. Lett. 36, 3593 (2011).
    [CrossRef]
  6. H. F. Xuan, J. Ju, and W. Jin, Opt. Express 18, 3828 (2010).
    [CrossRef]
  7. G. Salceda-Delgado, D. Monzon-Hernandez, A. Martinez-Rios, G. A. Cardenas-Sevilla, and J. Villatoro, Opt. Lett. 37, 1974 (2012).
    [CrossRef]
  8. L. P. Sun, J. Li, Y. Z. Tan, X. Sheng, X. D. Xie, S. Gao, and B. O. Guan, Opt. Express 20, 10180 (2012).
    [CrossRef]
  9. W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, IEEE Photon. Technol. Lett. 24, 1872 (2012).
    [CrossRef]
  10. R. Irawan, T. S. Chuan, T. C. Meng, and T. K. Ming, Open Biomed. Eng. J. 2, 28 (2008).
  11. K. M. Nowak, H. J. Baker, and D. R. Hall, Appl. Opt. 45, 162 (2006).
    [CrossRef]
  12. L. Robin, P. Combis, P. Cormont, L. Gallais, D. Hebert, C. Mainfray, and J. L. Rullier, J. Appl. Phys. 111, 063106 (2012).
    [CrossRef]
  13. S. C. Rashleigh, Opt. lett. 8, 336 (1983).
    [CrossRef]
  14. D. B. Mortimore, J. Lightwave Technol. 6, 1217 (1988).
    [CrossRef]
  15. M. Bass, Handbook of Optics, 3rd ed., (McGraw-Hill, 2009).

2013

2012

L. P. Sun, J. Li, Y. Z. Tan, X. Sheng, X. D. Xie, S. Gao, and B. O. Guan, Opt. Express 20, 10180 (2012).
[CrossRef]

G. Salceda-Delgado, D. Monzon-Hernandez, A. Martinez-Rios, G. A. Cardenas-Sevilla, and J. Villatoro, Opt. Lett. 37, 1974 (2012).
[CrossRef]

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, IEEE Photon. Technol. Lett. 24, 1872 (2012).
[CrossRef]

L. Robin, P. Combis, P. Cormont, L. Gallais, D. Hebert, C. Mainfray, and J. L. Rullier, J. Appl. Phys. 111, 063106 (2012).
[CrossRef]

2011

2010

2008

R. Irawan, T. S. Chuan, T. C. Meng, and T. K. Ming, Open Biomed. Eng. J. 2, 28 (2008).

2006

2001

1988

D. B. Mortimore, J. Lightwave Technol. 6, 1217 (1988).
[CrossRef]

1986

J. Noda, K. Okamoto, and Y. Sasaki, J. Lightwave Technol. 4, 1071 (1986).
[CrossRef]

1983

Baker, H. J.

Bass, M.

M. Bass, Handbook of Optics, 3rd ed., (McGraw-Hill, 2009).

Beltran-Mejia, F.

Biazoli, C. R.

Brambilla, G.

Cardenas-Sevilla, G. A.

Chang, Y. L.

Chow, K. K.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, IEEE Photon. Technol. Lett. 24, 1872 (2012).
[CrossRef]

Chuan, T. S.

R. Irawan, T. S. Chuan, T. C. Meng, and T. K. Ming, Open Biomed. Eng. J. 2, 28 (2008).

Combis, P.

L. Robin, P. Combis, P. Cormont, L. Gallais, D. Hebert, C. Mainfray, and J. L. Rullier, J. Appl. Phys. 111, 063106 (2012).
[CrossRef]

Cordeiro, C. M. B.

Cormont, P.

L. Robin, P. Combis, P. Cormont, L. Gallais, D. Hebert, C. Mainfray, and J. L. Rullier, J. Appl. Phys. 111, 063106 (2012).
[CrossRef]

Fujita, M.

Gallais, L.

L. Robin, P. Combis, P. Cormont, L. Gallais, D. Hebert, C. Mainfray, and J. L. Rullier, J. Appl. Phys. 111, 063106 (2012).
[CrossRef]

Gao, S.

Guan, B. O.

Hall, D. R.

Hebert, D.

L. Robin, P. Combis, P. Cormont, L. Gallais, D. Hebert, C. Mainfray, and J. L. Rullier, J. Appl. Phys. 111, 063106 (2012).
[CrossRef]

Irawan, R.

R. Irawan, T. S. Chuan, T. C. Meng, and T. K. Ming, Open Biomed. Eng. J. 2, 28 (2008).

Ji, W. B.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, IEEE Photon. Technol. Lett. 24, 1872 (2012).
[CrossRef]

Jin, L.

Jin, W.

Ju, J.

Jung, Y. M.

Kawanishi, S.

Kubota, H.

Li, J.

Lim, A.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, IEEE Photon. Technol. Lett. 24, 1872 (2012).
[CrossRef]

Liu, H. H.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, IEEE Photon. Technol. Lett. 24, 1872 (2012).
[CrossRef]

Mainfray, C.

L. Robin, P. Combis, P. Cormont, L. Gallais, D. Hebert, C. Mainfray, and J. L. Rullier, J. Appl. Phys. 111, 063106 (2012).
[CrossRef]

Martinez-Rios, A.

Meng, T. C.

R. Irawan, T. S. Chuan, T. C. Meng, and T. K. Ming, Open Biomed. Eng. J. 2, 28 (2008).

Ming, T. K.

R. Irawan, T. S. Chuan, T. C. Meng, and T. K. Ming, Open Biomed. Eng. J. 2, 28 (2008).

Monzon-Hernandez, D.

Mortimore, D. B.

D. B. Mortimore, J. Lightwave Technol. 6, 1217 (1988).
[CrossRef]

Noda, J.

J. Noda, K. Okamoto, and Y. Sasaki, J. Lightwave Technol. 4, 1071 (1986).
[CrossRef]

Nowak, K. M.

Oh, K.

Okamoto, K.

J. Noda, K. Okamoto, and Y. Sasaki, J. Lightwave Technol. 4, 1071 (1986).
[CrossRef]

Osorio, J. H.

Quan, Z.

Ran, Y.

Rashleigh, S. C.

Richardson, D. J.

Robin, L.

L. Robin, P. Combis, P. Cormont, L. Gallais, D. Hebert, C. Mainfray, and J. L. Rullier, J. Appl. Phys. 111, 063106 (2012).
[CrossRef]

Rullier, J. L.

L. Robin, P. Combis, P. Cormont, L. Gallais, D. Hebert, C. Mainfray, and J. L. Rullier, J. Appl. Phys. 111, 063106 (2012).
[CrossRef]

Salceda-Delgado, G.

Sasaki, Y.

J. Noda, K. Okamoto, and Y. Sasaki, J. Lightwave Technol. 4, 1071 (1986).
[CrossRef]

Sheng, X.

Sun, L. P.

Suzuki, K.

Tan, Y. Z.

Tanaka, M.

Tjin, S. C.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, IEEE Photon. Technol. Lett. 24, 1872 (2012).
[CrossRef]

Villatoro, J.

Xie, X. D.

Xuan, H. F.

Appl. Opt.

IEEE Photon. Technol. Lett.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, IEEE Photon. Technol. Lett. 24, 1872 (2012).
[CrossRef]

J. Appl. Phys.

L. Robin, P. Combis, P. Cormont, L. Gallais, D. Hebert, C. Mainfray, and J. L. Rullier, J. Appl. Phys. 111, 063106 (2012).
[CrossRef]

J. Lightwave Technol.

D. B. Mortimore, J. Lightwave Technol. 6, 1217 (1988).
[CrossRef]

J. Noda, K. Okamoto, and Y. Sasaki, J. Lightwave Technol. 4, 1071 (1986).
[CrossRef]

F. Beltran-Mejia, J. H. Osorio, C. R. Biazoli, and C. M. B. Cordeiro, J. Lightwave Technol. 31, 2756 (2013).
[CrossRef]

Open Biomed. Eng. J.

R. Irawan, T. S. Chuan, T. C. Meng, and T. K. Ming, Open Biomed. Eng. J. 2, 28 (2008).

Opt. Express

Opt. Lett.

Other

M. Bass, Handbook of Optics, 3rd ed., (McGraw-Hill, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the CO2-laser machining system for fabrication of elliptic silica fibers. At the bottom are the xy and xz views, respectively, for the laser-machined fiber, before tapering process. The arrows indicate the location from which the CO2-laser beam starts to scan.

Fig. 2.
Fig. 2.

Ellipticity of the fiber as a function of the CO2-laser power.

Fig. 3.
Fig. 3.

(a) Birefringence B and (b) group birefringence G as functions of the microfiber ellipticity at different sizes in the air.

Fig. 4.
Fig. 4.

(a) Transmission spectra, (b) dip wavelengths with respect to different external RIs for microfiber A, (c) transmission spectra, and (d) dip wavelengths with respect to different RIs for microfiber B, respectively. In (b) and (d), the dots are experimental data and solid curves are the calculated results, respectively. Curves (1) and (2) show the transmission spectra of the elliptic microfibers in alcohol before placing into the Sagnac loop.

Fig. 5.
Fig. 5.

Relationship between microfiber size a, the ellipse e, and the group birefringence G. Our experimental data are also plotted in the diagram. Approaching G=0, sensitivity could be enhanced significantly.

Fig. 6.
Fig. 6.

(a) Measured wavelength dip shift as a function of temperature in air. Dots, measured result; Curve, fitting result. (b) Measured evolution of the transmission spectrum of a single dip with a temperature change in the air.

Metrics