Abstract

We report on an ultrahigh repetition rate dark soliton fiber laser. We show both numerically and experimentally that by taking advantage of the cavity self-induced modulation instability and the dark soliton formation in a net normal dispersion cavity fiber laser, stable ultrahigh repetition rate dark soliton trains can be formed in a dispersion-managed cavity fiber laser. Stable dark soliton trains with a repetition rate as high as 280GHz have been generated in our experiment. Numerical simulations have shown that the effective gain bandwidth limitation plays an important role on the stabilization of the formed dark solitons in the laser.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 171 (1973).
    [CrossRef]
  2. Y. S. Kivshar, IEEE J. Quantum Electron. 29, 250 (1993).
    [CrossRef]
  3. W. Zhao and E. Bourkoff, Opt. Lett. 14, 703 (1989).
    [CrossRef]
  4. Y. Chen and J. Atai, Opt. Lett. 16, 1933 (1991).
    [CrossRef]
  5. P. Emplit, J. P. Hamaide, F. Reynaud, C. Froehly, and A. Barthelemy, Opt. Commun. 62, 374 (1987).
    [CrossRef]
  6. A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, Phys. Rev. Lett. 61, 2445 (1988).
    [CrossRef]
  7. D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, Electron. Lett. 30, 1326 (1994).
    [CrossRef]
  8. A. K. Atieh, P. Myslinske, J. Chrostowski, and P. Galko, Opt. Commun. 133, 541 (1997).
    [CrossRef]
  9. T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, Opt. Lett. 27, 482 (2002).
    [CrossRef]
  10. H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, Phys. Rev. A 80, 045803 (2009).
    [CrossRef]
  11. D. Y. Tang, L. Li, Y. F. Song, L. M. Zhao, H. Zhang, and D. Y. Shen, Phys. Rev. A 88, 013849 (2013).
    [CrossRef]
  12. E. Yoshida and M. Nakazawa, Opt. Lett. 22, 1409 (1997).
    [CrossRef]
  13. C. J. S. de Matos, D. A. Chestnut, and J. R. Taylor, Opt. Lett. 27, 915 (2002).
    [CrossRef]
  14. M. Haelterman, S. Trillo, and S. Wabnitz, Opt. Lett. 17, 745 (1992).
    [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

2013 (1)

D. Y. Tang, L. Li, Y. F. Song, L. M. Zhao, H. Zhang, and D. Y. Shen, Phys. Rev. A 88, 013849 (2013).
[CrossRef]

2009 (1)

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, Phys. Rev. A 80, 045803 (2009).
[CrossRef]

2002 (2)

1997 (2)

E. Yoshida and M. Nakazawa, Opt. Lett. 22, 1409 (1997).
[CrossRef]

A. K. Atieh, P. Myslinske, J. Chrostowski, and P. Galko, Opt. Commun. 133, 541 (1997).
[CrossRef]

1994 (1)

D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, Electron. Lett. 30, 1326 (1994).
[CrossRef]

1993 (1)

Y. S. Kivshar, IEEE J. Quantum Electron. 29, 250 (1993).
[CrossRef]

1992 (1)

1991 (1)

1989 (1)

1988 (1)

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, Phys. Rev. Lett. 61, 2445 (1988).
[CrossRef]

1987 (1)

P. Emplit, J. P. Hamaide, F. Reynaud, C. Froehly, and A. Barthelemy, Opt. Commun. 62, 374 (1987).
[CrossRef]

1973 (1)

A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 171 (1973).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Atai, J.

Atieh, A. K.

A. K. Atieh, P. Myslinske, J. Chrostowski, and P. Galko, Opt. Commun. 133, 541 (1997).
[CrossRef]

Barthelemy, A.

P. Emplit, J. P. Hamaide, F. Reynaud, C. Froehly, and A. Barthelemy, Opt. Commun. 62, 374 (1987).
[CrossRef]

Bourkoff, E.

Chamberlin, R. P.

D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, Electron. Lett. 30, 1326 (1994).
[CrossRef]

Chen, Y.

Chestnut, D. A.

Chrostowski, J.

A. K. Atieh, P. Myslinske, J. Chrostowski, and P. Galko, Opt. Commun. 133, 541 (1997).
[CrossRef]

Coen, S.

de Matos, C. J. S.

Dong, L.

D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, Electron. Lett. 30, 1326 (1994).
[CrossRef]

Emplit, P.

T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, Opt. Lett. 27, 482 (2002).
[CrossRef]

P. Emplit, J. P. Hamaide, F. Reynaud, C. Froehly, and A. Barthelemy, Opt. Commun. 62, 374 (1987).
[CrossRef]

Froehly, C.

P. Emplit, J. P. Hamaide, F. Reynaud, C. Froehly, and A. Barthelemy, Opt. Commun. 62, 374 (1987).
[CrossRef]

Galko, P.

A. K. Atieh, P. Myslinske, J. Chrostowski, and P. Galko, Opt. Commun. 133, 541 (1997).
[CrossRef]

Haelterman, M.

Hamaide, J. P.

P. Emplit, J. P. Hamaide, F. Reynaud, C. Froehly, and A. Barthelemy, Opt. Commun. 62, 374 (1987).
[CrossRef]

Hasegawa, A.

A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 171 (1973).
[CrossRef]

Hawkins, R. J.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, Phys. Rev. Lett. 61, 2445 (1988).
[CrossRef]

Heritage, J. P.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, Phys. Rev. Lett. 61, 2445 (1988).
[CrossRef]

Kirschner, E. M.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, Phys. Rev. Lett. 61, 2445 (1988).
[CrossRef]

Kivshar, Y. S.

Y. S. Kivshar, IEEE J. Quantum Electron. 29, 250 (1993).
[CrossRef]

Leaird, D. E.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, Phys. Rev. Lett. 61, 2445 (1988).
[CrossRef]

Li, L.

D. Y. Tang, L. Li, Y. F. Song, L. M. Zhao, H. Zhang, and D. Y. Shen, Phys. Rev. A 88, 013849 (2013).
[CrossRef]

Myslinske, P.

A. K. Atieh, P. Myslinske, J. Chrostowski, and P. Galko, Opt. Commun. 133, 541 (1997).
[CrossRef]

Nakazawa, M.

Payne, D. N.

D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, Electron. Lett. 30, 1326 (1994).
[CrossRef]

Reynaud, F.

P. Emplit, J. P. Hamaide, F. Reynaud, C. Froehly, and A. Barthelemy, Opt. Commun. 62, 374 (1987).
[CrossRef]

Richardson, D. J.

D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, Electron. Lett. 30, 1326 (1994).
[CrossRef]

Shen, D. Y.

D. Y. Tang, L. Li, Y. F. Song, L. M. Zhao, H. Zhang, and D. Y. Shen, Phys. Rev. A 88, 013849 (2013).
[CrossRef]

Song, Y. F.

D. Y. Tang, L. Li, Y. F. Song, L. M. Zhao, H. Zhang, and D. Y. Shen, Phys. Rev. A 88, 013849 (2013).
[CrossRef]

Sylvestre, T.

Tang, D. Y.

D. Y. Tang, L. Li, Y. F. Song, L. M. Zhao, H. Zhang, and D. Y. Shen, Phys. Rev. A 88, 013849 (2013).
[CrossRef]

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, Phys. Rev. A 80, 045803 (2009).
[CrossRef]

Tappert, F.

A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 171 (1973).
[CrossRef]

Taylor, J. R.

Thurston, R. N.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, Phys. Rev. Lett. 61, 2445 (1988).
[CrossRef]

Tomlinson, W. J.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, Phys. Rev. Lett. 61, 2445 (1988).
[CrossRef]

Trillo, S.

Wabnitz, S.

Weiner, A. M.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, Phys. Rev. Lett. 61, 2445 (1988).
[CrossRef]

Wu, X.

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, Phys. Rev. A 80, 045803 (2009).
[CrossRef]

Yoshida, E.

Zhang, H.

D. Y. Tang, L. Li, Y. F. Song, L. M. Zhao, H. Zhang, and D. Y. Shen, Phys. Rev. A 88, 013849 (2013).
[CrossRef]

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, Phys. Rev. A 80, 045803 (2009).
[CrossRef]

Zhao, L. M.

D. Y. Tang, L. Li, Y. F. Song, L. M. Zhao, H. Zhang, and D. Y. Shen, Phys. Rev. A 88, 013849 (2013).
[CrossRef]

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, Phys. Rev. A 80, 045803 (2009).
[CrossRef]

Zhao, W.

Appl. Phys. Lett. (1)

A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 171 (1973).
[CrossRef]

Electron. Lett. (1)

D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, Electron. Lett. 30, 1326 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. S. Kivshar, IEEE J. Quantum Electron. 29, 250 (1993).
[CrossRef]

Opt. Commun. (2)

A. K. Atieh, P. Myslinske, J. Chrostowski, and P. Galko, Opt. Commun. 133, 541 (1997).
[CrossRef]

P. Emplit, J. P. Hamaide, F. Reynaud, C. Froehly, and A. Barthelemy, Opt. Commun. 62, 374 (1987).
[CrossRef]

Opt. Lett. (6)

Phys. Rev. A (2)

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, Phys. Rev. A 80, 045803 (2009).
[CrossRef]

D. Y. Tang, L. Li, Y. F. Song, L. M. Zhao, H. Zhang, and D. Y. Shen, Phys. Rev. A 88, 013849 (2013).
[CrossRef]

Phys. Rev. Lett. (1)

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, Phys. Rev. Lett. 61, 2445 (1988).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Numerically calculated (a) temporal intensity, (b) phase profile, and (c) corresponding autocorrelation trace of the dark pulse train. U0=0.1, Δν=0.14, G=400, and cavity loss is 10%.

Fig. 2.
Fig. 2.

Optical spectrum (central wavelength, 1582 nm) of the dark pulse train shown in Fig. 1(a).

Fig. 3.
Fig. 3.

Schematic of the fiber laser. SMF, single-mode fiber; DCF, dispersion compensating fiber; PC, polarization controller; EDF, erbium-doped fiber; WDM, wavelength-division multiplexer; OC, optical coupler.

Fig. 4.
Fig. 4.

(a) Measured autocorrelation trace of the dark soliton pulse train. Inset: zoom-in of the autocorrelation trace; (b) the corresponding optical spectrum.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

iuzβ222ut2+γ|u|2uig2uig2Ωg22ut2=0,
g=g01+|u|2dt/Es,
iUξη22Uτ2+|U|2UiG2UiG2Ω22Uτ2=0,
ΩM2=2γP0|β2|,

Metrics