Abstract

A novel tunable liquid crystal microaxicon array is proposed and experimentally demonstrated. The proposed structure is capable of generating tunable axicons (thousands of elements) of micrometric size, with simple control (four control voltages) and low voltage, and is totally reconfigurable. Depending on the applied voltages, control over the diameter, as well as the effective wedge angle, can be achieved. Controls over the diameter ranging from 107 to 77 μm have been demonstrated. In addition, a control over the phase profile tunability, from 12π to 24π radians, has been demonstrated. This result modifies the effective cone angle. The diameter tunability, as well the effective cone angle, results in a control over the nondiffractive Bessel beam distance. The RMS wavefront deviation from the ideal axicon is only λ/3. The proposed device has several advantages over the existing microaxicon arrays, including being simple having a low cost. The device could contribute to developing new applications and to reducing the fabrication costs of current devices.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
    [CrossRef]
  2. S. R. Michra, Opt. Commun. 85, 159 (1991).
    [CrossRef]
  3. M. Piché, Ch. Varin, and N. McCarthy, Proc. SPIE 3611, 332 (1999).
    [CrossRef]
  4. J. H. Mcleod, J. Opt. Soc. Am. 50, 166 (1960).
    [CrossRef]
  5. M. Rioux, R. Tremblay, and P. A. Belanguer, Appl. Opt. 17, 1532 (1978).
    [CrossRef]
  6. Q. Ren and R. Birngruber, IEEE J. Quantum Electron. 26, 2305 (1990).
    [CrossRef]
  7. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, Opt. Lett. 31, 2450 (2006).
    [CrossRef]
  8. R. Arimoto, C. Saloma, T. Tanaka, and S. Kawata, Appl. Opt. 31, 6653 (1992).
    [CrossRef]
  9. W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, Appl. Phys. Lett. 87, 024104 (2005).
    [CrossRef]
  10. J. Arlt, T. Hitomi, and K. Dholakia, Appl. Phys. B 71, 549 (2000).
    [CrossRef]
  11. K. Gourley, I. Golub, and B. Chebbi, Proc. SPIE 7099, 70990D (2008).
    [CrossRef]
  12. A. Kirby, P. Hands, and G. Love, Opt. Express 15, 13496 (2007).
    [CrossRef]
  13. J. Algorri, G. Love, and V. Urruchi, Opt. Express 21, 24809 (2013).
    [CrossRef]
  14. R. Grunwald and M. Bock, J. Eur. Opt. Soc. Rap. Public. 7, 12009 (2012).
    [CrossRef]
  15. R. Grunwald, U. Griebner, F. Tschirschwitz, E. Nibbering, T. Elsaesser, V. Kebbel, H. Hartmann, and W. Jüptner, Opt. Lett. 25, 981 (2000).
    [CrossRef]
  16. M. Bock, S. Das, and R. Grunwald, Opt. Express 17, 7465 (2009).
    [CrossRef]
  17. K.-S. Lee and J. P. Rolland, Opt. Lett. 33, 1696 (2008).
    [CrossRef]
  18. X.-F. Lin, Q.-D. Chen, L.-G. Niu, T. Jiang, W.-Q. Wang, and H.-B. Sun, J. Lightwave Technol. 28, 1256 (2010).
    [CrossRef]
  19. R. Grunwald, S. Woggon, R. Ehlert, and W. Reinecke, Pure Appl. Opt. 6, 663 (1997).
    [CrossRef]
  20. Q. Peng, Y. Guo, B. Chen, J. Du, J. Xiang, and Z. Cui, Proc. SPIE 4755, 748 (2002).
    [CrossRef]
  21. N. Weber, D. Spether, A. Seifert, and H. Zappe, J. Opt. Soc. Am. A 29, 808 (2012).
    [CrossRef]
  22. M. Bock, S. Das, and R. Grunwald, Opt. Express 17, 7465 (2009).
  23. J. Brunne and U. Wallrabe, Opt. Lett. 38, 1939 (2013).
    [CrossRef]

2013

2012

N. Weber, D. Spether, A. Seifert, and H. Zappe, J. Opt. Soc. Am. A 29, 808 (2012).
[CrossRef]

R. Grunwald and M. Bock, J. Eur. Opt. Soc. Rap. Public. 7, 12009 (2012).
[CrossRef]

2010

2009

2008

K.-S. Lee and J. P. Rolland, Opt. Lett. 33, 1696 (2008).
[CrossRef]

K. Gourley, I. Golub, and B. Chebbi, Proc. SPIE 7099, 70990D (2008).
[CrossRef]

2007

2006

2005

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, Appl. Phys. Lett. 87, 024104 (2005).
[CrossRef]

2002

Q. Peng, Y. Guo, B. Chen, J. Du, J. Xiang, and Z. Cui, Proc. SPIE 4755, 748 (2002).
[CrossRef]

2000

1999

M. Piché, Ch. Varin, and N. McCarthy, Proc. SPIE 3611, 332 (1999).
[CrossRef]

1997

R. Grunwald, S. Woggon, R. Ehlert, and W. Reinecke, Pure Appl. Opt. 6, 663 (1997).
[CrossRef]

1992

1991

S. R. Michra, Opt. Commun. 85, 159 (1991).
[CrossRef]

1990

Q. Ren and R. Birngruber, IEEE J. Quantum Electron. 26, 2305 (1990).
[CrossRef]

1987

J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef]

1978

1960

Ahluwalia, B. P. S.

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, Appl. Phys. Lett. 87, 024104 (2005).
[CrossRef]

Algorri, J.

Arimoto, R.

Arlt, J.

J. Arlt, T. Hitomi, and K. Dholakia, Appl. Phys. B 71, 549 (2000).
[CrossRef]

Bachmann, A. H.

Belanguer, P. A.

Birngruber, R.

Q. Ren and R. Birngruber, IEEE J. Quantum Electron. 26, 2305 (1990).
[CrossRef]

Bock, M.

Brunne, J.

Chebbi, B.

K. Gourley, I. Golub, and B. Chebbi, Proc. SPIE 7099, 70990D (2008).
[CrossRef]

Chen, B.

Q. Peng, Y. Guo, B. Chen, J. Du, J. Xiang, and Z. Cui, Proc. SPIE 4755, 748 (2002).
[CrossRef]

Chen, Q.-D.

Cheong, W. C.

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, Appl. Phys. Lett. 87, 024104 (2005).
[CrossRef]

Cui, Z.

Q. Peng, Y. Guo, B. Chen, J. Du, J. Xiang, and Z. Cui, Proc. SPIE 4755, 748 (2002).
[CrossRef]

Das, S.

Dholakia, K.

J. Arlt, T. Hitomi, and K. Dholakia, Appl. Phys. B 71, 549 (2000).
[CrossRef]

Du, J.

Q. Peng, Y. Guo, B. Chen, J. Du, J. Xiang, and Z. Cui, Proc. SPIE 4755, 748 (2002).
[CrossRef]

Durnin, J.

J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef]

Ehlert, R.

R. Grunwald, S. Woggon, R. Ehlert, and W. Reinecke, Pure Appl. Opt. 6, 663 (1997).
[CrossRef]

Elsaesser, T.

Golub, I.

K. Gourley, I. Golub, and B. Chebbi, Proc. SPIE 7099, 70990D (2008).
[CrossRef]

Gourley, K.

K. Gourley, I. Golub, and B. Chebbi, Proc. SPIE 7099, 70990D (2008).
[CrossRef]

Griebner, U.

Grunwald, R.

Guo, Y.

Q. Peng, Y. Guo, B. Chen, J. Du, J. Xiang, and Z. Cui, Proc. SPIE 4755, 748 (2002).
[CrossRef]

Hands, P.

Hartmann, H.

Hitomi, T.

J. Arlt, T. Hitomi, and K. Dholakia, Appl. Phys. B 71, 549 (2000).
[CrossRef]

Jiang, T.

Jüptner, W.

Kawata, S.

Kebbel, V.

Kirby, A.

Lasser, T.

Lee, K.-S.

Leitgeb, R. A.

Lin, X.-F.

Love, G.

McCarthy, N.

M. Piché, Ch. Varin, and N. McCarthy, Proc. SPIE 3611, 332 (1999).
[CrossRef]

Mcleod, J. H.

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef]

Michra, S. R.

S. R. Michra, Opt. Commun. 85, 159 (1991).
[CrossRef]

Nibbering, E.

Niu, H. B.

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, Appl. Phys. Lett. 87, 024104 (2005).
[CrossRef]

Niu, L.-G.

Peng, Q.

Q. Peng, Y. Guo, B. Chen, J. Du, J. Xiang, and Z. Cui, Proc. SPIE 4755, 748 (2002).
[CrossRef]

Peng, X.

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, Appl. Phys. Lett. 87, 024104 (2005).
[CrossRef]

Piché, M.

M. Piché, Ch. Varin, and N. McCarthy, Proc. SPIE 3611, 332 (1999).
[CrossRef]

Reinecke, W.

R. Grunwald, S. Woggon, R. Ehlert, and W. Reinecke, Pure Appl. Opt. 6, 663 (1997).
[CrossRef]

Ren, Q.

Q. Ren and R. Birngruber, IEEE J. Quantum Electron. 26, 2305 (1990).
[CrossRef]

Rioux, M.

Rolland, J. P.

Saloma, C.

Seifert, A.

Spether, D.

Steinmann, L.

Sun, H.-B.

Tanaka, T.

Tremblay, R.

Tschirschwitz, F.

Urruchi, V.

Varin, Ch.

M. Piché, Ch. Varin, and N. McCarthy, Proc. SPIE 3611, 332 (1999).
[CrossRef]

Villiger, M.

Wallrabe, U.

Wang, H.

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, Appl. Phys. Lett. 87, 024104 (2005).
[CrossRef]

Wang, W.-Q.

Weber, N.

Woggon, S.

R. Grunwald, S. Woggon, R. Ehlert, and W. Reinecke, Pure Appl. Opt. 6, 663 (1997).
[CrossRef]

Xiang, J.

Q. Peng, Y. Guo, B. Chen, J. Du, J. Xiang, and Z. Cui, Proc. SPIE 4755, 748 (2002).
[CrossRef]

Yuan, X.-C.

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, Appl. Phys. Lett. 87, 024104 (2005).
[CrossRef]

Zappe, H.

Zhang, L.-S.

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, Appl. Phys. Lett. 87, 024104 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. B

J. Arlt, T. Hitomi, and K. Dholakia, Appl. Phys. B 71, 549 (2000).
[CrossRef]

Appl. Phys. Lett.

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, Appl. Phys. Lett. 87, 024104 (2005).
[CrossRef]

IEEE J. Quantum Electron.

Q. Ren and R. Birngruber, IEEE J. Quantum Electron. 26, 2305 (1990).
[CrossRef]

J. Eur. Opt. Soc. Rap. Public.

R. Grunwald and M. Bock, J. Eur. Opt. Soc. Rap. Public. 7, 12009 (2012).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Commun.

S. R. Michra, Opt. Commun. 85, 159 (1991).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef]

Proc. SPIE

M. Piché, Ch. Varin, and N. McCarthy, Proc. SPIE 3611, 332 (1999).
[CrossRef]

K. Gourley, I. Golub, and B. Chebbi, Proc. SPIE 7099, 70990D (2008).
[CrossRef]

Q. Peng, Y. Guo, B. Chen, J. Du, J. Xiang, and Z. Cui, Proc. SPIE 4755, 748 (2002).
[CrossRef]

Pure Appl. Opt.

R. Grunwald, S. Woggon, R. Ehlert, and W. Reinecke, Pure Appl. Opt. 6, 663 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Tunable microaxicon array. (a) Scheme of the device arrangement and (b) top view of the patterned electrodes. Note: drawings are not to scale.

Fig. 2.
Fig. 2.

Experimental setup for (a) interference pattern and (b) intensity measurements.

Fig. 3.
Fig. 3.

(a) Interference pattern and (b) intensity distribution of the Bessel beams, for V=5Vrms and z=2mm.

Fig. 4.
Fig. 4.

Tunable diameter for (a) V=5Vrms; (b) V=6Vrms; (c) V=7Vrms; and (d) V=8Vrms.

Fig. 5.
Fig. 5.

Tunable phase profile. The continuous lines are the experimental phase profiles. The dashed lines are the ideal axicon profiles.

Metrics