Abstract

Resonant transmission of microwaves is demonstrated through subwavelength holes on a semicircular radiator. Split ring resonators, offering a perfect control of the emitting apertures, are applied to determine the radiation direction and the resonant frequency. Full wave simulation shows that our design is capable of achieving wide angular scanning beams without causing any other main lobe, and the steerable beams could be easily controlled through tuning the excitation frequency.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
    [CrossRef]
  2. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, Nature 416, 61 (2002).
    [CrossRef]
  3. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, Nano Lett. 4, 1085 (2004).
    [CrossRef]
  4. C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
    [CrossRef]
  5. E. Popov, M. Nevière, S. Enoch, and R. Reinisch, Phys. Rev. B 62, 16100 (2000).
    [CrossRef]
  6. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
    [CrossRef]
  7. J. B. Pendry, L. Marítn-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004).
    [CrossRef]
  8. F. Medina, F. Mesa, and R. Marqués, IEEE Trans. Microwave Theory Tech. 56, 3108 (2008).
    [CrossRef]
  9. F. Medina, F. Mesa, and D. C. Skigin, IEEE Trans. Microwave Theory Tech. 58, 105 (2010).
    [CrossRef]
  10. A. O. Cakmak, K. Aydin, E. Colak, Z. F. Li, F. Bilotti, L. Vegni, and E. Ozbay, Appl. Phys. Lett. 95, 052103 (2009).
    [CrossRef]
  11. K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, Phys. Rev. Lett. 102, 013904 (2009).
    [CrossRef]
  12. R. Yang, Y. J. Xie, X. F. Li, Y. Y. Wang, R. Wang, and J. Jiang, Europhys. Lett. 84, 34001 (2008).
    [CrossRef]

2010 (1)

F. Medina, F. Mesa, and D. C. Skigin, IEEE Trans. Microwave Theory Tech. 58, 105 (2010).
[CrossRef]

2009 (2)

A. O. Cakmak, K. Aydin, E. Colak, Z. F. Li, F. Bilotti, L. Vegni, and E. Ozbay, Appl. Phys. Lett. 95, 052103 (2009).
[CrossRef]

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, Phys. Rev. Lett. 102, 013904 (2009).
[CrossRef]

2008 (2)

R. Yang, Y. J. Xie, X. F. Li, Y. Y. Wang, R. Wang, and J. Jiang, Europhys. Lett. 84, 34001 (2008).
[CrossRef]

F. Medina, F. Mesa, and R. Marqués, IEEE Trans. Microwave Theory Tech. 56, 3108 (2008).
[CrossRef]

2007 (1)

C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
[CrossRef]

2004 (2)

J. B. Pendry, L. Marítn-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004).
[CrossRef]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, Nano Lett. 4, 1085 (2004).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef]

2002 (1)

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, Nature 416, 61 (2002).
[CrossRef]

2000 (1)

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, Phys. Rev. B 62, 16100 (2000).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Aydin, K.

A. O. Cakmak, K. Aydin, E. Colak, Z. F. Li, F. Bilotti, L. Vegni, and E. Ozbay, Appl. Phys. Lett. 95, 052103 (2009).
[CrossRef]

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, Phys. Rev. Lett. 102, 013904 (2009).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef]

Bilotti, F.

A. O. Cakmak, K. Aydin, E. Colak, Z. F. Li, F. Bilotti, L. Vegni, and E. Ozbay, Appl. Phys. Lett. 95, 052103 (2009).
[CrossRef]

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, Phys. Rev. Lett. 102, 013904 (2009).
[CrossRef]

Cakmak, A. O.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, Phys. Rev. Lett. 102, 013904 (2009).
[CrossRef]

A. O. Cakmak, K. Aydin, E. Colak, Z. F. Li, F. Bilotti, L. Vegni, and E. Ozbay, Appl. Phys. Lett. 95, 052103 (2009).
[CrossRef]

Carminati, R.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, Nature 416, 61 (2002).
[CrossRef]

Chen, Y.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, Nature 416, 61 (2002).
[CrossRef]

Colak, E.

A. O. Cakmak, K. Aydin, E. Colak, Z. F. Li, F. Bilotti, L. Vegni, and E. Ozbay, Appl. Phys. Lett. 95, 052103 (2009).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Enoch, S.

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, Phys. Rev. B 62, 16100 (2000).
[CrossRef]

Fang, N.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, Nano Lett. 4, 1085 (2004).
[CrossRef]

Garcia-Vidal, F. J.

J. B. Pendry, L. Marítn-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004).
[CrossRef]

Genet, C.

C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Greffet, J. J.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, Nature 416, 61 (2002).
[CrossRef]

Jiang, J.

R. Yang, Y. J. Xie, X. F. Li, Y. Y. Wang, R. Wang, and J. Jiang, Europhys. Lett. 84, 34001 (2008).
[CrossRef]

Joulain, K.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, Nature 416, 61 (2002).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Li, X. F.

R. Yang, Y. J. Xie, X. F. Li, Y. Y. Wang, R. Wang, and J. Jiang, Europhys. Lett. 84, 34001 (2008).
[CrossRef]

Li, Z.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, Phys. Rev. Lett. 102, 013904 (2009).
[CrossRef]

Li, Z. F.

A. O. Cakmak, K. Aydin, E. Colak, Z. F. Li, F. Bilotti, L. Vegni, and E. Ozbay, Appl. Phys. Lett. 95, 052103 (2009).
[CrossRef]

Luo, Q.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, Nano Lett. 4, 1085 (2004).
[CrossRef]

Mainguy, S.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, Nature 416, 61 (2002).
[CrossRef]

Marítn-Moreno, L.

J. B. Pendry, L. Marítn-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004).
[CrossRef]

Marqués, R.

F. Medina, F. Mesa, and R. Marqués, IEEE Trans. Microwave Theory Tech. 56, 3108 (2008).
[CrossRef]

Medina, F.

F. Medina, F. Mesa, and D. C. Skigin, IEEE Trans. Microwave Theory Tech. 58, 105 (2010).
[CrossRef]

F. Medina, F. Mesa, and R. Marqués, IEEE Trans. Microwave Theory Tech. 56, 3108 (2008).
[CrossRef]

Mesa, F.

F. Medina, F. Mesa, and D. C. Skigin, IEEE Trans. Microwave Theory Tech. 58, 105 (2010).
[CrossRef]

F. Medina, F. Mesa, and R. Marqués, IEEE Trans. Microwave Theory Tech. 56, 3108 (2008).
[CrossRef]

Mulet, J. P.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, Nature 416, 61 (2002).
[CrossRef]

Nevière, M.

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, Phys. Rev. B 62, 16100 (2000).
[CrossRef]

Ozbay, E.

A. O. Cakmak, K. Aydin, E. Colak, Z. F. Li, F. Bilotti, L. Vegni, and E. Ozbay, Appl. Phys. Lett. 95, 052103 (2009).
[CrossRef]

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, Phys. Rev. Lett. 102, 013904 (2009).
[CrossRef]

Pendry, J. B.

J. B. Pendry, L. Marítn-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004).
[CrossRef]

Popov, E.

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, Phys. Rev. B 62, 16100 (2000).
[CrossRef]

Reinisch, R.

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, Phys. Rev. B 62, 16100 (2000).
[CrossRef]

Sahin, L.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, Phys. Rev. Lett. 102, 013904 (2009).
[CrossRef]

Skigin, D. C.

F. Medina, F. Mesa, and D. C. Skigin, IEEE Trans. Microwave Theory Tech. 58, 105 (2010).
[CrossRef]

Srituravanich, W.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, Nano Lett. 4, 1085 (2004).
[CrossRef]

Sun, C.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, Nano Lett. 4, 1085 (2004).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Vegni, L.

A. O. Cakmak, K. Aydin, E. Colak, Z. F. Li, F. Bilotti, L. Vegni, and E. Ozbay, Appl. Phys. Lett. 95, 052103 (2009).
[CrossRef]

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, Phys. Rev. Lett. 102, 013904 (2009).
[CrossRef]

Wang, R.

R. Yang, Y. J. Xie, X. F. Li, Y. Y. Wang, R. Wang, and J. Jiang, Europhys. Lett. 84, 34001 (2008).
[CrossRef]

Wang, Y. Y.

R. Yang, Y. J. Xie, X. F. Li, Y. Y. Wang, R. Wang, and J. Jiang, Europhys. Lett. 84, 34001 (2008).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Xie, Y. J.

R. Yang, Y. J. Xie, X. F. Li, Y. Y. Wang, R. Wang, and J. Jiang, Europhys. Lett. 84, 34001 (2008).
[CrossRef]

Yang, R.

R. Yang, Y. J. Xie, X. F. Li, Y. Y. Wang, R. Wang, and J. Jiang, Europhys. Lett. 84, 34001 (2008).
[CrossRef]

Zhang, X.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, Nano Lett. 4, 1085 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

A. O. Cakmak, K. Aydin, E. Colak, Z. F. Li, F. Bilotti, L. Vegni, and E. Ozbay, Appl. Phys. Lett. 95, 052103 (2009).
[CrossRef]

Europhys. Lett. (1)

R. Yang, Y. J. Xie, X. F. Li, Y. Y. Wang, R. Wang, and J. Jiang, Europhys. Lett. 84, 34001 (2008).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

F. Medina, F. Mesa, and R. Marqués, IEEE Trans. Microwave Theory Tech. 56, 3108 (2008).
[CrossRef]

F. Medina, F. Mesa, and D. C. Skigin, IEEE Trans. Microwave Theory Tech. 58, 105 (2010).
[CrossRef]

Nano Lett. (1)

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, Nano Lett. 4, 1085 (2004).
[CrossRef]

Nature (4)

C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, Nature 416, 61 (2002).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef]

Phys. Rev. B (1)

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, Phys. Rev. B 62, 16100 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, Phys. Rev. Lett. 102, 013904 (2009).
[CrossRef]

Science (1)

J. B. Pendry, L. Marítn-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic image of the ET radiator and the frequency scanning from the subwavelength aperture array. Three EWs are demonstrated on the semicircular shorting plate in the direction of θ=60°, θ=0°, and θ=30°. (a) Front view; (b) top view; (c) magnified picture of the purple dashed box in (a) and (b), illustrating the details of the relative position and the structural parameters of the hole and the SRR.

Fig. 2.
Fig. 2.

Normalized E-field distributions through subwavelength holes on the semicircular shorting plate of the radiator at 9 GHz, θ=60° [(a), (d)]; 10 GHz, θ=0° [(b), (e)]; and 11 GHz, θ=30° [(c), (f)], respectively. (a), (b), and (c) demonstrate the E-field distributions in the radiator having no SRRs, while (d), (e), and (f) demonstrate the E-field distributions in the ET radiator with proper designed SRRs. All the near fields are normalized by 2×103V/m. The feeding microwave is directed in the z direction and its E component is directed in the x direction.

Fig. 3.
Fig. 3.

Far-field radiation patterns through subwavelength holes on the semicircular shorting plate of the ET radiator at 9 GHz, θ=60° [(a), (d)]; 10 GHz, θ=0° [(b), (e)]; and 11 GHz, θ=30° [(c), (f)], respectively. (a), (b), and (c) demonstrate the 3D plots of the far-field radiations of the ET radiator, while (d), (e), and (f) demonstrate the 2D plots of the far-field radiations of the ET radiator at the yz plane of ϕ=90°. The maximum E-fields are 21.32 dB [(a), (d)], 18.63 dB [(b), (d)], and 21.58 dB [(c), (f)], respectively.

Fig. 4.
Fig. 4.

Graphical representation of the reflection spectrum from the radiator. (a) Return loss of the radiator with no SRR and the ET radiator in Fig. 1 within the X-band. Magnified pictures of reflections in (a) of the ET radiator at (b) 9 GHz, (c) 10 GHz, and (d) 11 GHz.

Tables (1)

Tables Icon

Table 1. Structural Parameters of the Employed SRRs for the Resonant Transmissions

Metrics