Abstract

Circular surface-relief diffraction gratings with a constant pitch were photo-inscribed on thin films of a disperse red 1 functionalized glass-forming compound using a novel holographic technique. Various light-interfering metallic fixtures, which consisted of annular rings with a sloped and polished inner surface, were designed and fabricated. Each of them allowed the inscription of stable and high-quality circular diffraction gratings with pitches ranging from approximately 600–1400 nm and depths up to 250 nm. This was accomplished by exposure to a collimated laser beam with an irradiance of 604  mW/cm2 for 350 s. The resulting gratings had a diameter of 11.4 mm and had the advantage of being produced in a simple single-step procedure with no postprocessing or specialized equipment. The pitch and diameter of these circular gratings were dependent on the fixture geometry, while the depth was related to the exposure time.

© 2014 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription