Abstract

Time-reversed ultrasonically encoded (TRUE) optical focusing in turbid media was previously implemented using both analog and digital phase conjugation. The digital approach, in addition to its large energy gain, can improve the focal intensity and resolution by iterative focusing. However, performing iterative focusing at each focal position can be time-consuming. Here, we show that by gradually moving the focal position, the TRUE focal intensity is improved, as in iterative focusing at a fixed position, and can be continuously scanned to image fluorescent targets in a shorter time. In addition, our setup is, to the best of our knowledge, the first demonstration of TRUE focusing using a digital phase conjugate mirror in a reflection mode, which is more suitable for practical applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Xu, H. Liu, and L. V. Wang, Nat. Photonics 5, 154 (2011).
    [CrossRef]
  2. Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. H. Yang, Nat. Commun. 3, 928 (2012).
    [CrossRef]
  3. K. Si, R. Fiolka, and M. Cui, Nat. Photonics 6, 657 (2012).
    [CrossRef]
  4. K. Si, R. Fiolka, and M. Cui, Sci. Rep. 2, 748 (2012).
    [CrossRef]
  5. P. Lai, Y. Suzuki, X. Xu, and L. V. Wang, Laser Phys. Lett. 10, 075604 (2013).
    [CrossRef]
  6. J. W. Tay, M. A. Taylor, and W. P. Bowen, Appl. Opt. 48, 2236 (2009).
    [CrossRef]
  7. J. Oton, P. Ambs, M. S. Millan, and E. Perez-Cabre, Appl. Opt. 46, 5667 (2007).
    [CrossRef]
  8. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemart, Lasers Surg. Med. 12, 510 (1992).
    [CrossRef]
  9. L. V. Wang, Phys. Rev. Lett. 87, 043903 (2001).
    [CrossRef]
  10. Y. Li, P. L. Hemmer, C. Kim, H. Zhang, and L. V. Wang, Opt. Express 16, 14862 (2008).
    [CrossRef]
  11. T. W. Murray, L. Sui, G. Maguluri, R. A. Roy, A. Nieva, F. J. Blonigen, and C. A. DiMarizo, Opt. Lett. 29, 2509 (2004).
    [CrossRef]
  12. G. Rousseau, A. Blouin, and J.-P. Monchalin, Opt. Lett. 34, 3445 (2009).
    [CrossRef]

2013 (1)

P. Lai, Y. Suzuki, X. Xu, and L. V. Wang, Laser Phys. Lett. 10, 075604 (2013).
[CrossRef]

2012 (3)

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. H. Yang, Nat. Commun. 3, 928 (2012).
[CrossRef]

K. Si, R. Fiolka, and M. Cui, Nat. Photonics 6, 657 (2012).
[CrossRef]

K. Si, R. Fiolka, and M. Cui, Sci. Rep. 2, 748 (2012).
[CrossRef]

2011 (1)

X. Xu, H. Liu, and L. V. Wang, Nat. Photonics 5, 154 (2011).
[CrossRef]

2009 (2)

2008 (1)

2007 (1)

2004 (1)

2001 (1)

L. V. Wang, Phys. Rev. Lett. 87, 043903 (2001).
[CrossRef]

1992 (1)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemart, Lasers Surg. Med. 12, 510 (1992).
[CrossRef]

Ambs, P.

Blonigen, F. J.

Blouin, A.

Bowen, W. P.

Cui, M.

K. Si, R. Fiolka, and M. Cui, Sci. Rep. 2, 748 (2012).
[CrossRef]

K. Si, R. Fiolka, and M. Cui, Nat. Photonics 6, 657 (2012).
[CrossRef]

DiMarizo, C. A.

DiMarzio, C. A.

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. H. Yang, Nat. Commun. 3, 928 (2012).
[CrossRef]

Fiolka, R.

K. Si, R. Fiolka, and M. Cui, Nat. Photonics 6, 657 (2012).
[CrossRef]

K. Si, R. Fiolka, and M. Cui, Sci. Rep. 2, 748 (2012).
[CrossRef]

Flock, S. T.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemart, Lasers Surg. Med. 12, 510 (1992).
[CrossRef]

Hemmer, P. L.

Jacques, S. L.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemart, Lasers Surg. Med. 12, 510 (1992).
[CrossRef]

Judkewitz, B.

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. H. Yang, Nat. Commun. 3, 928 (2012).
[CrossRef]

Kim, C.

Lai, P.

P. Lai, Y. Suzuki, X. Xu, and L. V. Wang, Laser Phys. Lett. 10, 075604 (2013).
[CrossRef]

Li, Y.

Liu, H.

X. Xu, H. Liu, and L. V. Wang, Nat. Photonics 5, 154 (2011).
[CrossRef]

Maguluri, G.

Millan, M. S.

Monchalin, J.-P.

Murray, T. W.

Nieva, A.

Oton, J.

Perez-Cabre, E.

Rousseau, G.

Roy, R. A.

Si, K.

K. Si, R. Fiolka, and M. Cui, Nat. Photonics 6, 657 (2012).
[CrossRef]

K. Si, R. Fiolka, and M. Cui, Sci. Rep. 2, 748 (2012).
[CrossRef]

Star, W. M.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemart, Lasers Surg. Med. 12, 510 (1992).
[CrossRef]

Sui, L.

Suzuki, Y.

P. Lai, Y. Suzuki, X. Xu, and L. V. Wang, Laser Phys. Lett. 10, 075604 (2013).
[CrossRef]

Tay, J. W.

Taylor, M. A.

van Gemart, M. J. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemart, Lasers Surg. Med. 12, 510 (1992).
[CrossRef]

Wang, L. V.

P. Lai, Y. Suzuki, X. Xu, and L. V. Wang, Laser Phys. Lett. 10, 075604 (2013).
[CrossRef]

X. Xu, H. Liu, and L. V. Wang, Nat. Photonics 5, 154 (2011).
[CrossRef]

Y. Li, P. L. Hemmer, C. Kim, H. Zhang, and L. V. Wang, Opt. Express 16, 14862 (2008).
[CrossRef]

L. V. Wang, Phys. Rev. Lett. 87, 043903 (2001).
[CrossRef]

Wang, Y. M.

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. H. Yang, Nat. Commun. 3, 928 (2012).
[CrossRef]

Wilson, B. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemart, Lasers Surg. Med. 12, 510 (1992).
[CrossRef]

Xu, X.

P. Lai, Y. Suzuki, X. Xu, and L. V. Wang, Laser Phys. Lett. 10, 075604 (2013).
[CrossRef]

X. Xu, H. Liu, and L. V. Wang, Nat. Photonics 5, 154 (2011).
[CrossRef]

Yang, C. H.

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. H. Yang, Nat. Commun. 3, 928 (2012).
[CrossRef]

Zhang, H.

Appl. Opt. (2)

Laser Phys. Lett. (1)

P. Lai, Y. Suzuki, X. Xu, and L. V. Wang, Laser Phys. Lett. 10, 075604 (2013).
[CrossRef]

Lasers Surg. Med. (1)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemart, Lasers Surg. Med. 12, 510 (1992).
[CrossRef]

Nat. Commun. (1)

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. H. Yang, Nat. Commun. 3, 928 (2012).
[CrossRef]

Nat. Photonics (2)

K. Si, R. Fiolka, and M. Cui, Nat. Photonics 6, 657 (2012).
[CrossRef]

X. Xu, H. Liu, and L. V. Wang, Nat. Photonics 5, 154 (2011).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

L. V. Wang, Phys. Rev. Lett. 87, 043903 (2001).
[CrossRef]

Sci. Rep. (1)

K. Si, R. Fiolka, and M. Cui, Sci. Rep. 2, 748 (2012).
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (2188 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the reflection-mode digital TRUE focusing optical system. AOM, acousto-optic modulators; A, aperture; BE, beam expanders; BS, beam splitter; HP, half-wave plates; IL, imaging lens for CMOS camera; IP, imaging plane of the CMOS camera; L, lenses; OS, optical shutter; P, polarizer; PB, polarizing beam splitters; QP, quarter-wave plate; R, reference beam; S, sample beam; SLM, spatial light modulator; UST, ultrasonic transducer. The digital phase-conjugate mirror (DPCM) is enclosed in a dotted frame for clarity.

Fig. 2.
Fig. 2.

Fluorescent images from single-shot TRUE focusing, iterative focusing, and continuous scanning. (a) Schematic of experimental configuration. CM, clear medium; DPCM, digital phase-conjugate mirror; L, lens; LPF, longpass filter; QDS, quantum-dot sheet; R, reflector; RL, relay lens; TL, turbid layer; UST, ultrasonic transducer. (b) CCD image of excited fluorescent signal on QD sheet when SLM pattern is uniform. Scale bar, 500 μm. (c)–(e) CCD images of excited fluorescent signal by (c) single-shot TRUE focusing, (d) 20-times iterative focusing, and (e) continuous scanning with step size Δx=5μm (see Media 1). The US positions are indicated by two yellow arrows in each figure. (f) Cross sections of excited foci by 20-times iterated TRUE focusing and continuous scanning with Δx=5μm.

Fig. 3.
Fig. 3.

Fluorescent imaging of QD targets through a turbid layer. (a) Photo of QD targets (T1, T2) placed behind a turbid layer. (b) Path of continuous scanning. (c) Fluorescent image obtained by continuous scanning with intervals Δx=10μm and Δy=37.5μm. (d) Cross-sectional image along the horizontal dashed line in (c), shown together using 1-D images using single-shot TRUE focusing and with a uniform SLM pattern. (e) 1-D image along the vertical dashed line in (c), using continuous scanning with an interval Δy=37.5μm.

Fig. 4.
Fig. 4.

Performance of continuous scanning with different scanning step sizes Δx. (a) SNR-to-peak relationship for different Δx. (b) Dependency of the focused signal peak on Δx. Error bars indicate the standard deviations.

Metrics