Abstract

We report the development of a compact, high-power, continuous-wave, single-frequency, ultraviolet (UV) source with extended wavelength tunability. The device is based on single-pass, intracavity, second-harmonic-generation (SHG) of the signal radiation of a singly resonant optical parametric oscillator (SRO) working in the visible and near-IR wavelength range. The SRO is pumped in the green with a 25-mm-long, multigrating, MgO doped periodically poled stoichiometric lithium tantalate (MgO:sPPLT) as nonlinear crystal. Using three grating periods, 8.5, 9.0, and 9.5 μm of the MgO:sPPLT crystal and a single set of cavity mirrors, the SRO can be tuned continuously across 710.7–836.3 nm in the signal and corresponding idler across 2115.8–1462.1 nm with maximum idler power of 1.9 W and maximum out-coupled signal power of 254 mW. By frequency-doubling the intracavity signal with a 5-mm-long bismuth borate (BIBO) crystal, we can further tune the SRO continuously over 62.8 nm across 355.4–418.2 nm in the UV with maximum single-frequency UV power, as much as 770 mW at 398.28 nm in a Gaussian beam profile. The UV radiation has an instantaneous line-width of 14.5MHz and peak-peak frequency stability of 151 MHz over 100 s. More than 95% of the tuning range provides UV power >260mW. Access to lower UV wavelengths can in principle be realized by operating the SRO in the visible using shorter grating periods.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, Nat. Photonics 4, 170 (2010).
    [CrossRef]
  2. A. K. Jayasinghe, J. Rohner, and M. S. Hutson, Biomed. Opt. Express 2, 2590 (2011).
    [CrossRef]
  3. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, Opt. Lett. 21, 2023 (1996).
    [CrossRef]
  4. D. Basting, N. Djeu, and K. Jain, Excimer Laser Technology (Springer, 2005), p. 8.
  5. D. W. Coutts and A. J. S. McGonigle, IEEE Journal of Quantum Electronics 40, 1430 (2004).
    [CrossRef]
  6. H. Liu, D. J. Spence, D. W. Coutts, H. Sato, and T. Fukuda, Opt. Express 16, 2226 (2008).
    [CrossRef]
  7. R. T. White, L. T. Mckinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, Appl. Phys. B 77, 547 (2003).
    [CrossRef]
  8. M. Ghotbi and M. Ebrahim-Zadeh, Opt. Lett. 30, 3395 (2005).
    [CrossRef]
  9. S. Sayama and M. Ohtsu, Opt. Commun. 137, 295 (1997).
    [CrossRef]
  10. J.-I. Kim and D. Meschede, Opt. Express 16, 10803 (2008).
    [CrossRef]
  11. K. Mizuuchi, A. Morikawa, T. Sugita, K. Yamamoto, N. Pavel, and T. Taira, Appl. Phys. Lett. 85, 3959 (2004).
    [CrossRef]
  12. M. Ebrahim-Zadeh, in Handbook of Optics (McGraw-Hill, 2010), Vol. IV, Chap. 17.
  13. S. Chaitanya Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, Appl. Phys. B 102, 31 (2011).
    [CrossRef]
  14. G. K. Samanta, G. R. Fayaz, Z. Sun, and M. Ebrahim-Zadeh, Opt. Lett. 32, 400 (2007).
    [CrossRef]
  15. G. K. Samanta and M. Ebrahim-Zadeh, Opt. Lett. 33, 1228 (2008).
    [CrossRef]
  16. K. Devi, S. Chaitanya Kumar, and M. Ebrahim-Zadeh, Opt. Express 21, 24829 (2013).
    [CrossRef]
  17. M. Ghotbi and M. Ebrahim-Zadeh, Opt. Express 12, 6002 (2004).
    [CrossRef]
  18. G. K. Samanta, G. R. Fayaz, and M. Ebrahim-Zadeh, Opt. Lett. 32, 2623 (2007).
    [CrossRef]
  19. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, Phys. Rev. A 60, R773 (1999).
    [CrossRef]
  20. G. K. Samanta, S. Chaitanya Kumar, A. Aadhi, and M. Ebrahim-Zadeh, Opt. Express 22, 11476 (2014).

2014 (1)

2013 (1)

2011 (2)

A. K. Jayasinghe, J. Rohner, and M. S. Hutson, Biomed. Opt. Express 2, 2590 (2011).
[CrossRef]

S. Chaitanya Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, Appl. Phys. B 102, 31 (2011).
[CrossRef]

2010 (1)

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, Nat. Photonics 4, 170 (2010).
[CrossRef]

2008 (3)

2007 (2)

2005 (1)

2004 (3)

D. W. Coutts and A. J. S. McGonigle, IEEE Journal of Quantum Electronics 40, 1430 (2004).
[CrossRef]

K. Mizuuchi, A. Morikawa, T. Sugita, K. Yamamoto, N. Pavel, and T. Taira, Appl. Phys. Lett. 85, 3959 (2004).
[CrossRef]

M. Ghotbi and M. Ebrahim-Zadeh, Opt. Express 12, 6002 (2004).
[CrossRef]

2003 (1)

R. T. White, L. T. Mckinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, Appl. Phys. B 77, 547 (2003).
[CrossRef]

1999 (1)

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, Phys. Rev. A 60, R773 (1999).
[CrossRef]

1997 (1)

S. Sayama and M. Ohtsu, Opt. Commun. 137, 295 (1997).
[CrossRef]

1996 (1)

Aadhi, A.

Appelbaum, I.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, Phys. Rev. A 60, R773 (1999).
[CrossRef]

Basting, D.

D. Basting, N. Djeu, and K. Jain, Excimer Laser Technology (Springer, 2005), p. 8.

Baxter, G. W.

R. T. White, L. T. Mckinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, Appl. Phys. B 77, 547 (2003).
[CrossRef]

Butterworth, S. D.

R. T. White, L. T. Mckinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, Appl. Phys. B 77, 547 (2003).
[CrossRef]

Callan, J. P.

Chaitanya Kumar, S.

Coutts, D. W.

H. Liu, D. J. Spence, D. W. Coutts, H. Sato, and T. Fukuda, Opt. Express 16, 2226 (2008).
[CrossRef]

D. W. Coutts and A. J. S. McGonigle, IEEE Journal of Quantum Electronics 40, 1430 (2004).
[CrossRef]

Das, R.

S. Chaitanya Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, Appl. Phys. B 102, 31 (2011).
[CrossRef]

Devi, K.

Djeu, N.

D. Basting, N. Djeu, and K. Jain, Excimer Laser Technology (Springer, 2005), p. 8.

Eberhard, P. H.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, Phys. Rev. A 60, R773 (1999).
[CrossRef]

Ebrahim-Zadeh, M.

Fayaz, G. R.

Finlay, R. J.

Fukuda, T.

Ghotbi, M.

Glezer, E. N.

Hanna, D. C.

R. T. White, L. T. Mckinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, Appl. Phys. B 77, 547 (2003).
[CrossRef]

Her, T.-H.

Huang, L.

Hutson, M. S.

Jain, K.

D. Basting, N. Djeu, and K. Jain, Excimer Laser Technology (Springer, 2005), p. 8.

Jayasinghe, A. K.

Kiesel, N.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, Nat. Photonics 4, 170 (2010).
[CrossRef]

Kim, J.-I.

Krischek, R.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, Nat. Photonics 4, 170 (2010).
[CrossRef]

Kwiat, P. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, Phys. Rev. A 60, R773 (1999).
[CrossRef]

Liu, H.

Mazur, E.

McGonigle, A. J. S.

D. W. Coutts and A. J. S. McGonigle, IEEE Journal of Quantum Electronics 40, 1430 (2004).
[CrossRef]

Mckinnie, L. T.

R. T. White, L. T. Mckinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, Appl. Phys. B 77, 547 (2003).
[CrossRef]

Meschede, D.

Michelberger, P.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, Nat. Photonics 4, 170 (2010).
[CrossRef]

Milosavljevic, M.

Mizuuchi, K.

K. Mizuuchi, A. Morikawa, T. Sugita, K. Yamamoto, N. Pavel, and T. Taira, Appl. Phys. Lett. 85, 3959 (2004).
[CrossRef]

Morikawa, A.

K. Mizuuchi, A. Morikawa, T. Sugita, K. Yamamoto, N. Pavel, and T. Taira, Appl. Phys. Lett. 85, 3959 (2004).
[CrossRef]

Ohtsu, M.

S. Sayama and M. Ohtsu, Opt. Commun. 137, 295 (1997).
[CrossRef]

Ozawa, A.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, Nat. Photonics 4, 170 (2010).
[CrossRef]

Pavel, N.

K. Mizuuchi, A. Morikawa, T. Sugita, K. Yamamoto, N. Pavel, and T. Taira, Appl. Phys. Lett. 85, 3959 (2004).
[CrossRef]

Rohner, J.

Ross, G. W.

R. T. White, L. T. Mckinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, Appl. Phys. B 77, 547 (2003).
[CrossRef]

Samanta, G. K.

Sato, H.

Sayama, S.

S. Sayama and M. Ohtsu, Opt. Commun. 137, 295 (1997).
[CrossRef]

Smith, P. G. R.

R. T. White, L. T. Mckinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, Appl. Phys. B 77, 547 (2003).
[CrossRef]

Spence, D. J.

Sugita, T.

K. Mizuuchi, A. Morikawa, T. Sugita, K. Yamamoto, N. Pavel, and T. Taira, Appl. Phys. Lett. 85, 3959 (2004).
[CrossRef]

Sun, Z.

Taira, T.

K. Mizuuchi, A. Morikawa, T. Sugita, K. Yamamoto, N. Pavel, and T. Taira, Appl. Phys. Lett. 85, 3959 (2004).
[CrossRef]

Udem, T.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, Nat. Photonics 4, 170 (2010).
[CrossRef]

Waks, E.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, Phys. Rev. A 60, R773 (1999).
[CrossRef]

Warrington, D. M.

R. T. White, L. T. Mckinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, Appl. Phys. B 77, 547 (2003).
[CrossRef]

Weinfurter, H.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, Nat. Photonics 4, 170 (2010).
[CrossRef]

White, A. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, Phys. Rev. A 60, R773 (1999).
[CrossRef]

White, R. T.

R. T. White, L. T. Mckinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, Appl. Phys. B 77, 547 (2003).
[CrossRef]

Wieczorek, W.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, Nat. Photonics 4, 170 (2010).
[CrossRef]

Yamamoto, K.

K. Mizuuchi, A. Morikawa, T. Sugita, K. Yamamoto, N. Pavel, and T. Taira, Appl. Phys. Lett. 85, 3959 (2004).
[CrossRef]

Appl. Phys. B (2)

R. T. White, L. T. Mckinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, Appl. Phys. B 77, 547 (2003).
[CrossRef]

S. Chaitanya Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, Appl. Phys. B 102, 31 (2011).
[CrossRef]

Appl. Phys. Lett. (1)

K. Mizuuchi, A. Morikawa, T. Sugita, K. Yamamoto, N. Pavel, and T. Taira, Appl. Phys. Lett. 85, 3959 (2004).
[CrossRef]

Biomed. Opt. Express (1)

IEEE Journal of Quantum Electronics (1)

D. W. Coutts and A. J. S. McGonigle, IEEE Journal of Quantum Electronics 40, 1430 (2004).
[CrossRef]

Nat. Photonics (1)

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, Nat. Photonics 4, 170 (2010).
[CrossRef]

Opt. Commun. (1)

S. Sayama and M. Ohtsu, Opt. Commun. 137, 295 (1997).
[CrossRef]

Opt. Express (5)

Opt. Lett. (5)

Phys. Rev. A (1)

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, Phys. Rev. A 60, R773 (1999).
[CrossRef]

Other (2)

M. Ebrahim-Zadeh, in Handbook of Optics (McGraw-Hill, 2010), Vol. IV, Chap. 17.

D. Basting, N. Djeu, and K. Jain, Excimer Laser Technology (Springer, 2005), p. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the experimental setup for UV generation. M 1 6 , mirrors; L, lens; λ / 2 , half-wave plates; PBS, polarizing beam-splitter cube; MgO:sPPLT and BIBO, nonlinear crystals for SRO and frequency doubling, respectively.

Fig. 2.
Fig. 2.

Variation of UV power across the tuning range. The pump power was fixed at 8 W.

Fig. 3.
Fig. 3.

Variation of SRO output powers and UV power as a function of the input pump power at fixed crystal temperature (170°C) and grating period ( Λ = 8.5 μm ). The lines are guides for the eyes.

Fig. 4.
Fig. 4.

Variation of UV power as a function of the signal power. The solid line is the quadratic fit to the experimental data. Inset: linear dependence of the SHG power with the square of the pump power.

Fig. 5.
Fig. 5.

Frequency shift of the UV radiation over time. (Inset) Trace of the scanning Fabry–Perot interferometer to verify single frequency nature of the UV radiation.

Fig. 6.
Fig. 6.

(a) Far-field spatial intensity distribution of the UV radiation at 398.28 nm and signal (inset) at 796.56 nm measured using a CCD based beam profiler. Line-profile (blue) and corresponding Gaussian fit (red) of the UV spatial profile along (b) horizontal and (c) vertical planes.

Metrics