Abstract

Optical true time delay (OTTD) is an attractive way to realize microwave beam steering (MBS) due to its inherent features of broadband, low-loss, and compactness. In this Letter, we propose a novel OTTD approach named cyclic additional optical true time delay (CAO-TTD). It applies additional integer delays of the microwave carrier frequency to achieve spectral filtering but without disturbing the spatial filtering (beam steering). Based on such concept, a broadband MBS scheme for high-capacity wireless communication is proposed, which allows the tuning of both spectral filtering and spatial filtering. The experimental results match well with the theoretical analysis.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Mailloux, Phased Array Antenna Handbook (Artech House, 2005).
  2. W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, J. Lightwave Technol. 9, 1124 (1991).
    [CrossRef]
  3. O. Raz, S. Barzilay, R. Rotman, and M. Tur, J. Lightwave Technol. 26, 2774 (2008).
    [CrossRef]
  4. I. Frigyes and A. J. Seeds, IEEE Trans. Microwave Theor. Tech. 43, 2378 (1995).
    [CrossRef]
  5. B. Vidal, J. L. Corral, and J. Marti, IEEE Microw. Wirel. Compon. Lett. 13, 238 (2003).
    [CrossRef]
  6. J. Capmany, B. Ortega, and D. Pastor, J. Lightwave Technol. 24, 201 (2006).
    [CrossRef]
  7. Z. Cao, F. Li, H. P. A. van den Boom, E. Tangdiongga, and A. M. J. Koonen, in European Conference and Exhibition on Optical Communication (ECOC) (2013), pp. 1–3.

2008 (1)

2006 (1)

2003 (1)

B. Vidal, J. L. Corral, and J. Marti, IEEE Microw. Wirel. Compon. Lett. 13, 238 (2003).
[CrossRef]

1995 (1)

I. Frigyes and A. J. Seeds, IEEE Trans. Microwave Theor. Tech. 43, 2378 (1995).
[CrossRef]

1991 (1)

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, J. Lightwave Technol. 9, 1124 (1991).
[CrossRef]

Barzilay, S.

Bernstein, N.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, J. Lightwave Technol. 9, 1124 (1991).
[CrossRef]

Cao, Z.

Z. Cao, F. Li, H. P. A. van den Boom, E. Tangdiongga, and A. M. J. Koonen, in European Conference and Exhibition on Optical Communication (ECOC) (2013), pp. 1–3.

Capmany, J.

Corral, J. L.

B. Vidal, J. L. Corral, and J. Marti, IEEE Microw. Wirel. Compon. Lett. 13, 238 (2003).
[CrossRef]

Frigyes, I.

I. Frigyes and A. J. Seeds, IEEE Trans. Microwave Theor. Tech. 43, 2378 (1995).
[CrossRef]

Koonen, A. M. J.

Z. Cao, F. Li, H. P. A. van den Boom, E. Tangdiongga, and A. M. J. Koonen, in European Conference and Exhibition on Optical Communication (ECOC) (2013), pp. 1–3.

Lee, J. J.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, J. Lightwave Technol. 9, 1124 (1991).
[CrossRef]

Li, F.

Z. Cao, F. Li, H. P. A. van den Boom, E. Tangdiongga, and A. M. J. Koonen, in European Conference and Exhibition on Optical Communication (ECOC) (2013), pp. 1–3.

Mailloux, R.

R. Mailloux, Phased Array Antenna Handbook (Artech House, 2005).

Marti, J.

B. Vidal, J. L. Corral, and J. Marti, IEEE Microw. Wirel. Compon. Lett. 13, 238 (2003).
[CrossRef]

Newberg, I. L.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, J. Lightwave Technol. 9, 1124 (1991).
[CrossRef]

Ng, W.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, J. Lightwave Technol. 9, 1124 (1991).
[CrossRef]

Ortega, B.

Pastor, D.

Raz, O.

Rotman, R.

Seeds, A. J.

I. Frigyes and A. J. Seeds, IEEE Trans. Microwave Theor. Tech. 43, 2378 (1995).
[CrossRef]

Tangdiongga, E.

Z. Cao, F. Li, H. P. A. van den Boom, E. Tangdiongga, and A. M. J. Koonen, in European Conference and Exhibition on Optical Communication (ECOC) (2013), pp. 1–3.

Tangonan, G. L.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, J. Lightwave Technol. 9, 1124 (1991).
[CrossRef]

Tur, M.

van den Boom, H. P. A.

Z. Cao, F. Li, H. P. A. van den Boom, E. Tangdiongga, and A. M. J. Koonen, in European Conference and Exhibition on Optical Communication (ECOC) (2013), pp. 1–3.

Vidal, B.

B. Vidal, J. L. Corral, and J. Marti, IEEE Microw. Wirel. Compon. Lett. 13, 238 (2003).
[CrossRef]

Walston, A. A.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, J. Lightwave Technol. 9, 1124 (1991).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

B. Vidal, J. L. Corral, and J. Marti, IEEE Microw. Wirel. Compon. Lett. 13, 238 (2003).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

I. Frigyes and A. J. Seeds, IEEE Trans. Microwave Theor. Tech. 43, 2378 (1995).
[CrossRef]

J. Lightwave Technol. (3)

Other (2)

R. Mailloux, Phased Array Antenna Handbook (Artech House, 2005).

Z. Cao, F. Li, H. P. A. van den Boom, E. Tangdiongga, and A. M. J. Koonen, in European Conference and Exhibition on Optical Communication (ECOC) (2013), pp. 1–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Principle of optical true time delay (OTTD).

Fig. 2.
Fig. 2.

Principle of microwave phase antenna array based on cyclic additional optical true time delay (CAO-TTD).

Fig. 3.
Fig. 3.

Proof-of-concept experimental setup of the cyclic additional OTTD scheme.

Fig. 4.
Fig. 4.

Measured transmission curves for (a) 0.13–20 GHz and (b) 7.5–12.5 GHz, respectively. (c) The measured 2D far-field pattern of element antennas.

Fig. 5.
Fig. 5.

(a) Measured RF power versus optical delays, (b) bandpass filtering at 10 GHz, and (c) bandstop filtering at 10 GHz.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

So(t)=Eo(1+γSe(t))exp(jωot),
So(t)=Eo(1+γSe(tτ))exp(jωo(tτ)),
Sd(t)=2μγEo2Se(tτ)signal(t)=μSo(t)So(t)*=μEo2DC+2μγEo2Se(tτ)signal+μγ2Eo2Se2(tτ)beating,
Sd(t)=2μγEo2Se(tτ)signal.
AF(θ,f)=l=0L1Alexp[j2πfldc(sinθ+cτd)],
AF(θ,f)=l=0L1Alexp[j2πfldc(sinθ+cτd)]SpatialFiltering×exp(j2πflmTp)SpectralFiltering,
PSR=20log10(10PI(dB)20+110PI(dB)201).

Metrics