Abstract

Two important parameters of liquid clouds are the cloud effective size (CES) and liquid water content (LWC). To measure these parameters, we have used two multiple scattering depolarization effects: (1) the slope of the degree of linear polarization (SLDLP) at the cloud base, and (2) the saturated degree of linear polarization (SADLP) at infinite altitude. We used Monte Carlo simulation to validate this method, with the assumption that the water cloud droplet size follows a Gamma distribution. From our calculation, we find that although the SADLP varies with both extinction coefficient (or LWC) and the CES, the SLDLP varies only with the extinction coefficient. After extracting the extinction coefficient using the SLDLP, we can easily obtain the CES using the SADLP. As a result, we found that the CES and the LWC can be extracted from the experimental parameters of SLDLP and SADLP, which can be easily measured using a single wavelength depolarization LIDAR.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription