Abstract

A novel passive phase correction method for stable fiber transfer of radio-frequency (RF) signal is proposed and demonstrated. By employing only one local oscillator and two frequency mixers in the local station, an RF signal received by an optical remote antenna unit is transmitted to the local station with very small phase jitter. An experiment is performed. When a 6 GHz RF signal is delivered through a 20 km single-mode fiber, effective cancellation of the RF signal’s phase jitter induced by environmental perturbations is achieved. The residual jitter is less than 1.33 ps (about 0.05 rad). The proposed scheme requires no active mechanism to compensate the fiber-length fluctuations, and is thus compact, cost-effective, and easy to implement.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Cliche and B. Shillue, IEEE Contr. Syst. Mag. 26(1), 19 (2006).
    [CrossRef]
  2. M. Calhoun, S. Huang, and R. L. Tjoelker, Proc. IEEE 95, 1931 (2007).
    [CrossRef]
  3. W. Q. Wang, IEEE Trans. Aerosp. Electron. Syst. 45, 1040 (2009).
    [CrossRef]
  4. Y. F. Chen, J. Jiang, and D. J. Jones, Opt. Express 14, 12134 (2006).
    [CrossRef]
  5. T. Akiyama, H. Matsuzawa, E. Haraguchi, T. Ando, and Y. Hirano, in IEEE MTT-S International Microwave Symposium Digest (IEEE, 2012), pp. 1–3.
  6. D. Macias-Valadez, “Improvement of vertical precision in GPS positioning with a GPS-over-fiber configuration and real-time relative hardware delay monitoring” Ph.D. dissertation (Université Laval, 2011).
  7. K. W. Holman, D. D. Hudson, J. Ye, and D. J. Jones, Opt. Lett. 30, 1225 (2005).
    [CrossRef]
  8. L. Sliwczynski, P. Krehlik, L. Buczek, and M. Lipinski, IEEE Trans. Instrum. Meas. 60, 1480 (2011).
    [CrossRef]
  9. A. X. Zhang, Y. T. Dai, F. F. Yin, T. P. Ren, K. Xu, J. Q. Li, Y. F. Ji, J. T. Lin, and G. S. Tang, Opt. Lett. 38, 2419 (2013).
    [CrossRef]
  10. J. Kim, J. Chen, Z. Zhang, F. N. C. Wong, F. X. Kartner, F. Loehl, and H. Schlarb, Opt. Lett. 32, 1044 (2007).
    [CrossRef]
  11. G. Marra, R. Slavik, H. S. Margolis, S. N. Lea, P. Petropoulos, D. J. Richardson, and P. Gill, Opt. Lett. 36, 511 (2011).
    [CrossRef]
  12. J. Ye, J. L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Bergquist, L. W. Hollberg, L. Robertsson, and L. S. Ma, J. Opt. Soc. Am. B 20, 1459 (2003).
    [CrossRef]
  13. Z. L. Wu, Y. T. Dai, F. F. Yin, K. Xu, J. Q. Li, and J. T. Lin, Opt. Lett. 38, 1098 (2013).
    [CrossRef]
  14. Y. B. He, B. J. Orr, K. G. H. Baldwin, M. J. Wouters, A. N. Luiten, G. Aben, and R. B. Warrington, Opt. Express 21, 18754 (2013).
    [CrossRef]
  15. F. F. Yin, A. X. Zhang, Y. T. Dai, T. P. Ren, K. Xu, J. Q. Li, J. T. Lin, and G. S. Tang, Opt. Express 22, 878 (2014).
    [CrossRef]

2014

2013

2011

G. Marra, R. Slavik, H. S. Margolis, S. N. Lea, P. Petropoulos, D. J. Richardson, and P. Gill, Opt. Lett. 36, 511 (2011).
[CrossRef]

L. Sliwczynski, P. Krehlik, L. Buczek, and M. Lipinski, IEEE Trans. Instrum. Meas. 60, 1480 (2011).
[CrossRef]

2009

W. Q. Wang, IEEE Trans. Aerosp. Electron. Syst. 45, 1040 (2009).
[CrossRef]

2007

2006

J. F. Cliche and B. Shillue, IEEE Contr. Syst. Mag. 26(1), 19 (2006).
[CrossRef]

Y. F. Chen, J. Jiang, and D. J. Jones, Opt. Express 14, 12134 (2006).
[CrossRef]

2005

2003

Aben, G.

Akiyama, T.

T. Akiyama, H. Matsuzawa, E. Haraguchi, T. Ando, and Y. Hirano, in IEEE MTT-S International Microwave Symposium Digest (IEEE, 2012), pp. 1–3.

Ando, T.

T. Akiyama, H. Matsuzawa, E. Haraguchi, T. Ando, and Y. Hirano, in IEEE MTT-S International Microwave Symposium Digest (IEEE, 2012), pp. 1–3.

Baldwin, K. G. H.

Bergquist, J. C.

Bize, S.

Buczek, L.

L. Sliwczynski, P. Krehlik, L. Buczek, and M. Lipinski, IEEE Trans. Instrum. Meas. 60, 1480 (2011).
[CrossRef]

Calhoun, M.

M. Calhoun, S. Huang, and R. L. Tjoelker, Proc. IEEE 95, 1931 (2007).
[CrossRef]

Chen, J.

Chen, Y. F.

Cliche, J. F.

J. F. Cliche and B. Shillue, IEEE Contr. Syst. Mag. 26(1), 19 (2006).
[CrossRef]

Dai, Y. T.

Diddams, S. A.

Gill, P.

Hall, J. L.

Haraguchi, E.

T. Akiyama, H. Matsuzawa, E. Haraguchi, T. Ando, and Y. Hirano, in IEEE MTT-S International Microwave Symposium Digest (IEEE, 2012), pp. 1–3.

He, Y. B.

Hirano, Y.

T. Akiyama, H. Matsuzawa, E. Haraguchi, T. Ando, and Y. Hirano, in IEEE MTT-S International Microwave Symposium Digest (IEEE, 2012), pp. 1–3.

Hollberg, L. W.

Holman, K. W.

Huang, S.

M. Calhoun, S. Huang, and R. L. Tjoelker, Proc. IEEE 95, 1931 (2007).
[CrossRef]

Hudson, D. D.

Ji, Y. F.

Jiang, J.

Jones, D. J.

Jones, R. J.

Kartner, F. X.

Kim, J.

Kitching, J.

Krehlik, P.

L. Sliwczynski, P. Krehlik, L. Buczek, and M. Lipinski, IEEE Trans. Instrum. Meas. 60, 1480 (2011).
[CrossRef]

Lea, S. N.

Li, J. Q.

Lin, J. T.

Lipinski, M.

L. Sliwczynski, P. Krehlik, L. Buczek, and M. Lipinski, IEEE Trans. Instrum. Meas. 60, 1480 (2011).
[CrossRef]

Loehl, F.

Luiten, A. N.

Ma, L. S.

Macias-Valadez, D.

D. Macias-Valadez, “Improvement of vertical precision in GPS positioning with a GPS-over-fiber configuration and real-time relative hardware delay monitoring” Ph.D. dissertation (Université Laval, 2011).

Margolis, H. S.

Marra, G.

Matsuzawa, H.

T. Akiyama, H. Matsuzawa, E. Haraguchi, T. Ando, and Y. Hirano, in IEEE MTT-S International Microwave Symposium Digest (IEEE, 2012), pp. 1–3.

Orr, B. J.

Peng, J. L.

Petropoulos, P.

Ren, T. P.

Richardson, D. J.

Robertsson, L.

Schlarb, H.

Shillue, B.

J. F. Cliche and B. Shillue, IEEE Contr. Syst. Mag. 26(1), 19 (2006).
[CrossRef]

Slavik, R.

Sliwczynski, L.

L. Sliwczynski, P. Krehlik, L. Buczek, and M. Lipinski, IEEE Trans. Instrum. Meas. 60, 1480 (2011).
[CrossRef]

Tang, G. S.

Tjoelker, R. L.

M. Calhoun, S. Huang, and R. L. Tjoelker, Proc. IEEE 95, 1931 (2007).
[CrossRef]

Wang, W. Q.

W. Q. Wang, IEEE Trans. Aerosp. Electron. Syst. 45, 1040 (2009).
[CrossRef]

Warrington, R. B.

Wong, F. N. C.

Wouters, M. J.

Wu, Z. L.

Xu, K.

Ye, J.

Yin, F. F.

Zhang, A. X.

Zhang, Z.

IEEE Contr. Syst. Mag.

J. F. Cliche and B. Shillue, IEEE Contr. Syst. Mag. 26(1), 19 (2006).
[CrossRef]

IEEE Trans. Aerosp. Electron. Syst.

W. Q. Wang, IEEE Trans. Aerosp. Electron. Syst. 45, 1040 (2009).
[CrossRef]

IEEE Trans. Instrum. Meas.

L. Sliwczynski, P. Krehlik, L. Buczek, and M. Lipinski, IEEE Trans. Instrum. Meas. 60, 1480 (2011).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Proc. IEEE

M. Calhoun, S. Huang, and R. L. Tjoelker, Proc. IEEE 95, 1931 (2007).
[CrossRef]

Other

T. Akiyama, H. Matsuzawa, E. Haraguchi, T. Ando, and Y. Hirano, in IEEE MTT-S International Microwave Symposium Digest (IEEE, 2012), pp. 1–3.

D. Macias-Valadez, “Improvement of vertical precision in GPS positioning with a GPS-over-fiber configuration and real-time relative hardware delay monitoring” Ph.D. dissertation (Université Laval, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of the proposed scheme for highly stable RF phase transfer based on frequency mixing. EBPF, electrical bandpass filter; MZM, Mach–Zehnder modulator; EDFA, erbium-doped fiber amplifier; LD, laser diode; LO, local oscillator; PD, photodetector; VODL, variable optical delay line; EA, electrical amplifier.

Fig. 2.
Fig. 2.

Eye diagrams of the signal received at the local station (a) without and (b) with the proposed post phase correction scheme.

Fig. 3.
Fig. 3.

RMS timing jitter of the signal after 20 km SMF transmission with (solid line) and without (dashed line) post phase correction.

Fig. 4.
Fig. 4.

Relationship between the power of the electrical signal received in the RAU and the RMS time jitter of the signal after transmission through the fiber link with the proposed post phase correction scheme.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A1=cos(ωrt+φr),
A2=cos(0.5ωrt+φ0),
A3=cos[ωr(tτ)+φr],
A4=cos[0.5ωr(t2τ)+φ0].
A5=cos(1.5ωrtωrτ+φr+φ0).
A6=cos(ωrt+φr).

Metrics