Abstract

Photoacoustic microscopy (PAM) has remained one of the fastest developing biomedical imaging modalities in the past decade. The confocal strategy of optical illumination and acoustic detection is a way to boost the sensitivity of PAM. To achieve confocal PAM, current PAM systems utilize separate acoustic and optical converging devices, making the systems bulky and complicated. In this Letter, we demonstrate the use of a single-liquid lens to successfully achieve acoustic and optical confocal configuration for optical-resolution PAM (ORPAM). Using the lens with a numerical aperture of 0.43, we show that the resolution of the ORPAM system is 4.8 μm with a significantly improved sensitivity of acoustic detection. We also apply this compact ORPAM system to in vivo imaging of the vasculature of a rat ear.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Beard, Interface Focus 1, 602 (2011).
    [CrossRef]
  2. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, Nat. Biotechnol. 24, 848 (2006).
    [CrossRef]
  3. L. Xi, L. Zhou, and H. Jiang, Appl. Phys. Lett. 101, 013702 (2012).
    [CrossRef]
  4. L. V. Wang and S. Hu, Science 335, 1458 (2012).
    [CrossRef]
  5. X. Yang, X. Cai, K. Maslov, L. V. Wang, and Q. Luo, Chin. Opt. Lett. 8, 609 (2010).
    [CrossRef]
  6. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, Opt. Lett. 33, 929 (2008).
    [CrossRef]
  7. Y. Yuan, S. Yang, and D. Xing, Appl. Phys. Lett. 100, 023702 (2012).
    [CrossRef]
  8. C. Song, L. Xi, and H. Jiang, Opt. Lett. 38, 2930 (2013).
    [CrossRef]
  9. C. Song, L. Xi, and H. Jiang, J. Appl. Phys. 114, 194703 (2013).
    [CrossRef]
  10. G. C. Knollman, J. L. S. Bellin, and J. L. Weaver, J. Acoust. Soc. Am. 49, 253 (1971).
    [CrossRef]
  11. N. Sugiura and S. Morita, Appl. Opt. 32, 4181 (1993).
    [CrossRef]
  12. C. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, Lab Chip 9, 1178 (2009).
    [CrossRef]
  13. C. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, Microfluid. Nanofluid. 9, 889 (2010).
    [CrossRef]
  14. K. H. Song and L. V. Wang, J. Biomed. Opt. 12, 060503 (2007).
    [CrossRef]
  15. J. T. Walsh, T. J. Flotte, and T. F. Deutsch, Lasers Surg. Med. 9, 314 (1989).
    [CrossRef]
  16. V. P. Zharov, E. I. Galanzha, E. V. Shashkov, N. G. Khlebtsov, and V. V. Tuchin, Opt. Lett. 31, 3623 (2006).
    [CrossRef]

2013

C. Song, L. Xi, and H. Jiang, Opt. Lett. 38, 2930 (2013).
[CrossRef]

C. Song, L. Xi, and H. Jiang, J. Appl. Phys. 114, 194703 (2013).
[CrossRef]

2012

L. Xi, L. Zhou, and H. Jiang, Appl. Phys. Lett. 101, 013702 (2012).
[CrossRef]

L. V. Wang and S. Hu, Science 335, 1458 (2012).
[CrossRef]

Y. Yuan, S. Yang, and D. Xing, Appl. Phys. Lett. 100, 023702 (2012).
[CrossRef]

2011

P. Beard, Interface Focus 1, 602 (2011).
[CrossRef]

2010

X. Yang, X. Cai, K. Maslov, L. V. Wang, and Q. Luo, Chin. Opt. Lett. 8, 609 (2010).
[CrossRef]

C. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, Microfluid. Nanofluid. 9, 889 (2010).
[CrossRef]

2009

C. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, Lab Chip 9, 1178 (2009).
[CrossRef]

2008

2007

K. H. Song and L. V. Wang, J. Biomed. Opt. 12, 060503 (2007).
[CrossRef]

2006

1993

1989

J. T. Walsh, T. J. Flotte, and T. F. Deutsch, Lasers Surg. Med. 9, 314 (1989).
[CrossRef]

1971

G. C. Knollman, J. L. S. Bellin, and J. L. Weaver, J. Acoust. Soc. Am. 49, 253 (1971).
[CrossRef]

Asundi, A. K.

C. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, Microfluid. Nanofluid. 9, 889 (2010).
[CrossRef]

C. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, Lab Chip 9, 1178 (2009).
[CrossRef]

Beard, P.

P. Beard, Interface Focus 1, 602 (2011).
[CrossRef]

Bellin, J. L. S.

G. C. Knollman, J. L. S. Bellin, and J. L. Weaver, J. Acoust. Soc. Am. 49, 253 (1971).
[CrossRef]

Cai, X.

Deutsch, T. F.

J. T. Walsh, T. J. Flotte, and T. F. Deutsch, Lasers Surg. Med. 9, 314 (1989).
[CrossRef]

Flotte, T. J.

J. T. Walsh, T. J. Flotte, and T. F. Deutsch, Lasers Surg. Med. 9, 314 (1989).
[CrossRef]

Galanzha, E. I.

Hu, S.

Jiang, H.

C. Song, L. Xi, and H. Jiang, Opt. Lett. 38, 2930 (2013).
[CrossRef]

C. Song, L. Xi, and H. Jiang, J. Appl. Phys. 114, 194703 (2013).
[CrossRef]

L. Xi, L. Zhou, and H. Jiang, Appl. Phys. Lett. 101, 013702 (2012).
[CrossRef]

Khlebtsov, N. G.

Knollman, G. C.

G. C. Knollman, J. L. S. Bellin, and J. L. Weaver, J. Acoust. Soc. Am. 49, 253 (1971).
[CrossRef]

Luo, Q.

Maslov, K.

Morita, S.

Nguyen, N. T.

C. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, Microfluid. Nanofluid. 9, 889 (2010).
[CrossRef]

C. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, Lab Chip 9, 1178 (2009).
[CrossRef]

Shashkov, E. V.

Song, C.

C. Song, L. Xi, and H. Jiang, J. Appl. Phys. 114, 194703 (2013).
[CrossRef]

C. Song, L. Xi, and H. Jiang, Opt. Lett. 38, 2930 (2013).
[CrossRef]

C. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, Microfluid. Nanofluid. 9, 889 (2010).
[CrossRef]

C. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, Lab Chip 9, 1178 (2009).
[CrossRef]

Song, K. H.

K. H. Song and L. V. Wang, J. Biomed. Opt. 12, 060503 (2007).
[CrossRef]

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, Nat. Biotechnol. 24, 848 (2006).
[CrossRef]

Sugiura, N.

Tan, S. H.

C. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, Microfluid. Nanofluid. 9, 889 (2010).
[CrossRef]

C. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, Lab Chip 9, 1178 (2009).
[CrossRef]

Tuchin, V. V.

Walsh, J. T.

J. T. Walsh, T. J. Flotte, and T. F. Deutsch, Lasers Surg. Med. 9, 314 (1989).
[CrossRef]

Wang, L. V.

L. V. Wang and S. Hu, Science 335, 1458 (2012).
[CrossRef]

X. Yang, X. Cai, K. Maslov, L. V. Wang, and Q. Luo, Chin. Opt. Lett. 8, 609 (2010).
[CrossRef]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, Opt. Lett. 33, 929 (2008).
[CrossRef]

K. H. Song and L. V. Wang, J. Biomed. Opt. 12, 060503 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, Nat. Biotechnol. 24, 848 (2006).
[CrossRef]

Weaver, J. L.

G. C. Knollman, J. L. S. Bellin, and J. L. Weaver, J. Acoust. Soc. Am. 49, 253 (1971).
[CrossRef]

Xi, L.

C. Song, L. Xi, and H. Jiang, Opt. Lett. 38, 2930 (2013).
[CrossRef]

C. Song, L. Xi, and H. Jiang, J. Appl. Phys. 114, 194703 (2013).
[CrossRef]

L. Xi, L. Zhou, and H. Jiang, Appl. Phys. Lett. 101, 013702 (2012).
[CrossRef]

Xing, D.

Y. Yuan, S. Yang, and D. Xing, Appl. Phys. Lett. 100, 023702 (2012).
[CrossRef]

Yang, S.

Y. Yuan, S. Yang, and D. Xing, Appl. Phys. Lett. 100, 023702 (2012).
[CrossRef]

Yang, X.

Yuan, Y.

Y. Yuan, S. Yang, and D. Xing, Appl. Phys. Lett. 100, 023702 (2012).
[CrossRef]

Zhang, H. F.

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, Opt. Lett. 33, 929 (2008).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, Nat. Biotechnol. 24, 848 (2006).
[CrossRef]

Zharov, V. P.

Zhou, L.

L. Xi, L. Zhou, and H. Jiang, Appl. Phys. Lett. 101, 013702 (2012).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

L. Xi, L. Zhou, and H. Jiang, Appl. Phys. Lett. 101, 013702 (2012).
[CrossRef]

Y. Yuan, S. Yang, and D. Xing, Appl. Phys. Lett. 100, 023702 (2012).
[CrossRef]

Chin. Opt. Lett.

Interface Focus

P. Beard, Interface Focus 1, 602 (2011).
[CrossRef]

J. Acoust. Soc. Am.

G. C. Knollman, J. L. S. Bellin, and J. L. Weaver, J. Acoust. Soc. Am. 49, 253 (1971).
[CrossRef]

J. Appl. Phys.

C. Song, L. Xi, and H. Jiang, J. Appl. Phys. 114, 194703 (2013).
[CrossRef]

J. Biomed. Opt.

K. H. Song and L. V. Wang, J. Biomed. Opt. 12, 060503 (2007).
[CrossRef]

Lab Chip

C. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, Lab Chip 9, 1178 (2009).
[CrossRef]

Lasers Surg. Med.

J. T. Walsh, T. J. Flotte, and T. F. Deutsch, Lasers Surg. Med. 9, 314 (1989).
[CrossRef]

Microfluid. Nanofluid.

C. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, Microfluid. Nanofluid. 9, 889 (2010).
[CrossRef]

Nat. Biotechnol.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, Nat. Biotechnol. 24, 848 (2006).
[CrossRef]

Opt. Lett.

Science

L. V. Wang and S. Hu, Science 335, 1458 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the ORPAM imaging system. ND, neutral-density filters; PD, photodiode; BP, beam splitter; SMF, single-mode fiber.

Fig. 2.
Fig. 2.

Schematic of the compact ORPAM imaging probe.

Fig. 3.
Fig. 3.

A, acoustic and optical relative refractive index versus weight percentage of water in the mixture; B, optical rays and acoustic pressure distribution when the lens was flat and fully infused.

Fig. 4.
Fig. 4.

A, 1D profile along the dashed white line across the acoustic focal point shown in Fig. 3B; B, B-scan images of the blade in the focal plane. 130 and 205 μm off the focal plane; C, 1D profile along the red dashed line shown in Fig. 4B.

Fig. 5.
Fig. 5.

A, MAP of human hair with and without acoustic focusing; B, 1D plots along the dashed lines in Fig. 5A. Scale bar: 20 μm.

Fig. 6.
Fig. 6.

A, A MAP image (top) and a selected B-scan image (bottom) of the rat ear; B, volumetric rendering of the vasculature of the imaged rat ear.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f=r2×(n1),
noptical=ninternalnexternal,
nacousticVexternalVinternal,
Resolutionn(=6dB)=1.028×f×cF×D,

Metrics