Abstract

This Letter reports an optically controlled microwave phase shifter with an ultra-wideband working bandwidth and a full 360° phase shifting range based on nonlinear polarization rotation (NPR) in a highly nonlinear fiber (HNLF). A continuous wave probe light is modulated by a polarization modulator (PolM) that is driven by a microwave signal to be phase shifted. The optical carrier and the first-order sidebands of the probe light experience different phase shifts due to the NPR induced by the control light in the HNLF. An optical bandpass filter is used to realize single-sideband modulation of the probe light by removing one of the first-order sidebands, as well as to reject the control light. After detecting by a photodetector, the phase of the recovered microwave signal is continuously tunable by adjusting the power of the control light. The proposed approach is theoretically analyzed and experimentally verified. A full 360° tunable phase shift is realized over an ultra-wideband frequency range from 8 to 38 GHz when the power of the control light is tuned from 0 to 570 mW.

© 2014 Optical Society of America

Full Article  |  PDF Article
Related Articles
True-time delay line with separate carrier tuning using dual-parallel MZM and stimulated Brillouin scattering-induced slow light

Wei Li, Ning Hua Zhu, Li Xian Wang, Jia Sheng Wang, Jian Guo Liu, Yu Liu, Xiao Qiong Qi, Liang Xie, Wei Chen, Xin Wang, and Wei Han
Opt. Express 19(13) 12312-12324 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription