Abstract

This Letter reports an optically controlled microwave phase shifter with an ultra-wideband working bandwidth and a full 360° phase shifting range based on nonlinear polarization rotation (NPR) in a highly nonlinear fiber (HNLF). A continuous wave probe light is modulated by a polarization modulator (PolM) that is driven by a microwave signal to be phase shifted. The optical carrier and the first-order sidebands of the probe light experience different phase shifts due to the NPR induced by the control light in the HNLF. An optical bandpass filter is used to realize single-sideband modulation of the probe light by removing one of the first-order sidebands, as well as to reject the control light. After detecting by a photodetector, the phase of the recovered microwave signal is continuously tunable by adjusting the power of the control light. The proposed approach is theoretically analyzed and experimentally verified. A full 360° tunable phase shift is realized over an ultra-wideband frequency range from 8 to 38 GHz when the power of the control light is tuned from 0 to 570 mW.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. M. Yang, O. Obi, G. Wen, Y. Q. Jin, and N. X. Sun, IEEE Microw. Wirel. Compon. Lett. 21, 240 (2011).
    [CrossRef]
  2. A. S. Nagra and R. A. York, IEEE Trans. Microw. Theory Tech. 47, 1705 (1999).
    [CrossRef]
  3. A. Loayssa and F. J. Lahoz, IEEE Photon. Technol. Lett. 18, 208 (2006).
    [CrossRef]
  4. W. Xue, S. Sales, J. Capmany, and J. Mørk, Opt. Express 18, 6156 (2010).
    [CrossRef]
  5. M. R. Fisher and S. L. Chuang, IEEE Photon. Technol. Lett. 18, 1714 (2006).
    [CrossRef]
  6. K. H. Lee, Y. M. Jhon, and W. Y. Choi, Opt. Lett. 30, 702 (2005).
    [CrossRef]
  7. J. Shen, G. Wu, W. Zou, R. Chen, and J. Chen, Appl. Opt. 52, 8332 (2013).
    [CrossRef]
  8. W. Liu and J. Yao, Opt. Lett. 39, 922 (2014).
    [CrossRef]
  9. W. Li, W. Zhang, and J. Yao, Opt. Express 20, 29838 (2012).
    [CrossRef]
  10. S. Pan and Y. Zhang, Opt. Lett. 37, 4483 (2012).
    [CrossRef]
  11. Y. M. Zhang and S. L. Pan, Opt. Lett. 38, 766 (2013).
    [CrossRef]
  12. W. Li, W. H. Sun, W. T. Wang, L. X. Wang, J. G. Liu, and N. H. Zhu, Opt. Express 22, 5522 (2014).
    [CrossRef]
  13. Y. Dong, H. He, W. Hu, Z. Li, Q. Wang, W. Kuang, T. H. Cheng, Y. J. Wen, Y. Wang, and C. Lu, Opt. Lett. 32, 745 (2007).
    [CrossRef]
  14. A. L. Campillo, Opt. Lett. 32, 3152 (2007).
    [CrossRef]
  15. W. Li, L. X. Wang, M. Li, and N. H. Zhu, Opt. Lett. 38, 3441 (2013).
    [CrossRef]
  16. Y. M. Chang, J. Lee, and J. H. Lee, Opt. Express 18, 20072 (2010).
    [CrossRef]
  17. X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, IEEE Trans. Microw. Theory Tech. 61, 3470 (2013).
    [CrossRef]

2014 (2)

2013 (4)

2012 (2)

2011 (1)

G. M. Yang, O. Obi, G. Wen, Y. Q. Jin, and N. X. Sun, IEEE Microw. Wirel. Compon. Lett. 21, 240 (2011).
[CrossRef]

2010 (2)

2007 (2)

2006 (2)

M. R. Fisher and S. L. Chuang, IEEE Photon. Technol. Lett. 18, 1714 (2006).
[CrossRef]

A. Loayssa and F. J. Lahoz, IEEE Photon. Technol. Lett. 18, 208 (2006).
[CrossRef]

2005 (1)

1999 (1)

A. S. Nagra and R. A. York, IEEE Trans. Microw. Theory Tech. 47, 1705 (1999).
[CrossRef]

Campillo, A. L.

Capmany, J.

Chang, Y. M.

Chen, J.

Chen, R.

Cheng, T. H.

Choi, W. Y.

Chuang, S. L.

M. R. Fisher and S. L. Chuang, IEEE Photon. Technol. Lett. 18, 1714 (2006).
[CrossRef]

Dong, Y.

Fisher, M. R.

M. R. Fisher and S. L. Chuang, IEEE Photon. Technol. Lett. 18, 1714 (2006).
[CrossRef]

He, H.

Hu, W.

Jhon, Y. M.

Jin, Y. Q.

G. M. Yang, O. Obi, G. Wen, Y. Q. Jin, and N. X. Sun, IEEE Microw. Wirel. Compon. Lett. 21, 240 (2011).
[CrossRef]

Kuang, W.

Lahoz, F. J.

A. Loayssa and F. J. Lahoz, IEEE Photon. Technol. Lett. 18, 208 (2006).
[CrossRef]

Lee, J.

Lee, J. H.

Lee, K. H.

Li, M.

Li, W.

Li, Z.

Liu, J. G.

Liu, W.

Loayssa, A.

A. Loayssa and F. J. Lahoz, IEEE Photon. Technol. Lett. 18, 208 (2006).
[CrossRef]

Lu, C.

Mørk, J.

Nagra, A. S.

A. S. Nagra and R. A. York, IEEE Trans. Microw. Theory Tech. 47, 1705 (1999).
[CrossRef]

Obi, O.

G. M. Yang, O. Obi, G. Wen, Y. Q. Jin, and N. X. Sun, IEEE Microw. Wirel. Compon. Lett. 21, 240 (2011).
[CrossRef]

Pan, S.

Pan, S. L.

Pan, W.

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, IEEE Trans. Microw. Theory Tech. 61, 3470 (2013).
[CrossRef]

Sales, S.

Shen, J.

Sun, N. X.

G. M. Yang, O. Obi, G. Wen, Y. Q. Jin, and N. X. Sun, IEEE Microw. Wirel. Compon. Lett. 21, 240 (2011).
[CrossRef]

Sun, W. H.

Wang, L. X.

Wang, Q.

Wang, W. T.

Wang, Y.

Wen, G.

G. M. Yang, O. Obi, G. Wen, Y. Q. Jin, and N. X. Sun, IEEE Microw. Wirel. Compon. Lett. 21, 240 (2011).
[CrossRef]

Wen, Y. J.

Wu, G.

Xue, W.

Yan, L.

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, IEEE Trans. Microw. Theory Tech. 61, 3470 (2013).
[CrossRef]

Yang, G. M.

G. M. Yang, O. Obi, G. Wen, Y. Q. Jin, and N. X. Sun, IEEE Microw. Wirel. Compon. Lett. 21, 240 (2011).
[CrossRef]

Yao, J.

W. Liu and J. Yao, Opt. Lett. 39, 922 (2014).
[CrossRef]

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, IEEE Trans. Microw. Theory Tech. 61, 3470 (2013).
[CrossRef]

W. Li, W. Zhang, and J. Yao, Opt. Express 20, 29838 (2012).
[CrossRef]

York, R. A.

A. S. Nagra and R. A. York, IEEE Trans. Microw. Theory Tech. 47, 1705 (1999).
[CrossRef]

Zhang, W.

Zhang, Y.

Zhang, Y. M.

Zhu, N. H.

Zou, W.

Zou, X.

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, IEEE Trans. Microw. Theory Tech. 61, 3470 (2013).
[CrossRef]

Appl. Opt. (1)

IEEE Microw. Wirel. Compon. Lett. (1)

G. M. Yang, O. Obi, G. Wen, Y. Q. Jin, and N. X. Sun, IEEE Microw. Wirel. Compon. Lett. 21, 240 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. Loayssa and F. J. Lahoz, IEEE Photon. Technol. Lett. 18, 208 (2006).
[CrossRef]

M. R. Fisher and S. L. Chuang, IEEE Photon. Technol. Lett. 18, 1714 (2006).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (2)

A. S. Nagra and R. A. York, IEEE Trans. Microw. Theory Tech. 47, 1705 (1999).
[CrossRef]

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, IEEE Trans. Microw. Theory Tech. 61, 3470 (2013).
[CrossRef]

Opt. Express (4)

Opt. Lett. (7)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of the optically controlled microwave phase shifter.

Fig. 2.
Fig. 2.

Measured optical spectra of (a) the signal at the output of the EDFA2 when the OBPF was removed, (b) the signal at the output of the EDFA2 when the OBPF was inserted, and (c) the zoom-in view of Fig. 2(b), where the optical spectrum for the microwave signal of 8 GHz as well as the transmission response of the OBPF are also shown.

Fig. 3.
Fig. 3.

Measured phase responses of the microwave phase shifter when the power of the control light was tuned from 0 to 570 mW.

Fig. 4.
Fig. 4.

Measured magnitude responses of the microwave phase shifter when the power of the control light was tuned from 0 to 570 mW.

Fig. 5.
Fig. 5.

Phase shift of a 20 GHz microwave signal and the power of the CW probe beam versus the power of the control beam.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E1(t)=[ExEy][expj(ωpt+βsinωmt)expj(ωptβsinωmt)],
E1(t)=[ExEy][J0(β)exp(jωpt)+J1(β)exp[j(ωp+ωm)t]J1(β)exp[j(ωpωm)t]J0(β)exp(jωpt)J1(β)exp[j(ωp+ωm)t]+J1(β)exp[j(ωpωm)t]],
E1(t)=[ExEy][J1(β)exp[j(ωp+ωm)t]J1(β)exp[j(ωpωm)t]J0(β)exp(jωpt)],
ns=2ns0Pc,nf=2nf0Pc,
φs=kpLns=2kpLns0Pc,φf=kpLnf=2kpLnf0Pc,
E2(t)=[EfEs][J1(β)exp[j(ωp+ωm)t+jφf]J1(β)exp[j(ωpωm)t+jφf]J0(β)exp(jωpt+jφs)].
E3(t)J0(β)exp(jωpt+jφs)+J1(β)exp[j(ωp+ωm)t+jφf]J1(β)exp[j(ωpωm)t+jφf].
E4(t)J0(β)exp(jωpt+jφs)J1(β)exp[j(ωpωm)t+jφf].
i(t)E4(t)·E4*(t)J0(β)J1(β)cos[ωmt+(1η)φsπ].

Metrics