Abstract

We analytically propose radially oscillating and quasi-guided surface plasmon polaritons (SPPs) by designing the outer and core dielectric permittivities εa and εc of a cylindrical metallic nanotube. When the propagation constant satisfies εa<Re(kz/k0)<εc, the electromagnetic field propagates along the radial direction in the core region and decays outside the nanotube, forming a standing radially oscillating SPP. In contrast, when εc<Re(kz/k0)<εa, the electromagnetic field decays in the core region and propagates outside the nanotube, forming a quasi-guided SPP. The propagation length of both SPPs can reach tens of micrometers, in particular, the radially oscillating SPPs have an ultrastrong light confinement. Finally, we design position-flexible broadband plasmonic router based on quasi-guided SPPs, and we also discuss the advantages of a nanolaser based on radially oscillating SPPs.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription