Abstract

We report on the demonstration and characterization of a silicon optical resonator for laser frequency stabilization, operating in the deep cryogenic regime at temperatures as low as 1.5 K. Robust operation was achieved, with absolute frequency drift less than 20 Hz over 1 h. This stability allowed sensitive measurements of the resonator thermal expansion coefficient (α). We found that α=4.6×1013K1 at 1.6 K. At 16.8 K α vanishes, with a derivative equal to 6×1010K2. The temperature of the resonator was stabilized to a level below 10 μK for averaging times longer than 20 s. The sensitivity of the resonator frequency to a variation of the laser power was also studied. The corresponding sensitivities and the expected Brownian noise indicate that this system should enable frequency stabilization of lasers at the low-1017 level.

© 2014 Optical Society of America

Full Article  |  PDF Article
Related Articles
Temperature-compensated cryogenic Fabry–Perot cavity

Eng K. Wong, Mark Notcutt, Colin T. Taylor, Anthony G. Mann, and David G. Blair
Appl. Opt. 36(33) 8563-8566 (1997)

Frequency characteristics of an inherently stable Nd:YAG laser operated at liquid helium temperature

Matthias Scholz, Evgeny Kovalchuk, and Achim Peters
Appl. Opt. 48(20) 3938-3942 (2009)

Temperature analysis of low-expansion Fabry-Perot cavities

Richard W. Fox
Opt. Express 17(17) 15023-15031 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription