Abstract

Ultrafast sources and detectors have been used to record the time-resolved scattering of light propagating through macroscopic scenes. In the context of computational imaging, decomposition of this transient light transport (TLT) is useful for applications, such as characterizing materials, imaging through diffuser layers, and relighting scenes dynamically. Here, we demonstrate a method of convolutional sparse coding to decompose TLT into direct reflections, inter-reflections, and subsurface scattering. The method relies on the sparsity composition of the time-resolved kernel. We show that it is robust and accurate to noise during the acquisition process.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (4)

» Media 1: MOV (3273 KB)     
» Media 2: MOV (2558 KB)     
» Media 3: MOV (4106 KB)     
» Media 4: MOV (3407 KB)     

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription