Abstract

We designed a cheap broadband uncooled microimager operating in the long-wavelength infrared range using only one lens at a minimal cost for the manufacturing process. The approach is based on thin optics where the device volume is small and therefore inexpensive materials can be used because some absorption can be tolerated. We have used a Fresnel lens on a thin silicon substrate. Up to now, Fresnel lenses have not been used for broadband imaging because of their chromatic properties. However, working in a relatively high diffraction order can significantly reduce chromatism. A prototype has been made for short range or indoor low-cost surveillance applications like people counting, and experimental images are presented.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Rogalski, Infrared Phys. Technol. 43, 187 (2002).
    [CrossRef]
  2. P. Robert, F. Trolez, E. Bercier, H. Clerambault, A. Touvignon, and J. L. Tissot, in Proceedings of the IRSf2 2013 (2013), p. 24 .
  3. K. Miyamoto, J. Opt. Soc. Am. 51, 17 (1961).
    [CrossRef]
  4. D. Falkis and G. M. Morris, Appl. Opt. 34, 2462 (1995).
    [CrossRef]
  5. D. W. Sweeney and G. E. Sommargen, Appl. Opt. 34, 2469 (1995).
    [CrossRef]
  6. G. P. Behrmann and J. N. Mait, in Micro-Optics: Elements, Systems and Applications (CRC Press, 1997), Chap. 10, pp. 259–292.
  7. Z. Liping, L. Y. Loy, Z. Yan, and Y. Zhisheng, Proc. SPIE 3897, 624 (1999).
    [CrossRef]
  8. A. P. Wood and P. J. Rogers, Proc. SPIE 5865, 58650B (2005).
    [CrossRef]
  9. G. J. Swanson, “Binary optics technology: the theory and design of multi-level diffractive optical elements,” , Massachusetts Institute of Technology, Lincoln Laboratory (1989).
  10. D. A. Buralli and G. M. Morris, Appl. Opt. 28, 3950 (1989).
    [CrossRef]
  11. J. W. Goodman, in Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005), Chap. 6, pp. 138–145.
  12. R. Gläbe and O. Riemer, Proc. SPIE 7716, 771602 (2010).
    [CrossRef]
  13. D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, in Diffractive Optics: Design, Fabrication, and Test (SPIE, 2004), Chap. 7, pp. 133–147.
  14. T. Takahata, K. Matsumoto, and I. Shimoyama, in The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (2013), p. 1408.
  15. J. Choi, A. A. Cruz-Cabrera, and A. Tanbakuchi, Proc. SPIE 8612, 86120G (2013).
    [CrossRef]
  16. G. Cogburn, A. Symmons, and L. Mertus, Proc. SPIE 7660, 766020 (2010).
    [CrossRef]
  17. A. Symmons and R. Pini, Proc. SPIE 8704, 870425 (2013).
    [CrossRef]

2013

J. Choi, A. A. Cruz-Cabrera, and A. Tanbakuchi, Proc. SPIE 8612, 86120G (2013).
[CrossRef]

A. Symmons and R. Pini, Proc. SPIE 8704, 870425 (2013).
[CrossRef]

2010

G. Cogburn, A. Symmons, and L. Mertus, Proc. SPIE 7660, 766020 (2010).
[CrossRef]

R. Gläbe and O. Riemer, Proc. SPIE 7716, 771602 (2010).
[CrossRef]

2005

A. P. Wood and P. J. Rogers, Proc. SPIE 5865, 58650B (2005).
[CrossRef]

2002

A. Rogalski, Infrared Phys. Technol. 43, 187 (2002).
[CrossRef]

1999

Z. Liping, L. Y. Loy, Z. Yan, and Y. Zhisheng, Proc. SPIE 3897, 624 (1999).
[CrossRef]

1995

1989

1961

Behrmann, G. P.

G. P. Behrmann and J. N. Mait, in Micro-Optics: Elements, Systems and Applications (CRC Press, 1997), Chap. 10, pp. 259–292.

Bercier, E.

P. Robert, F. Trolez, E. Bercier, H. Clerambault, A. Touvignon, and J. L. Tissot, in Proceedings of the IRSf2 2013 (2013), p. 24 .

Buralli, D. A.

Choi, J.

J. Choi, A. A. Cruz-Cabrera, and A. Tanbakuchi, Proc. SPIE 8612, 86120G (2013).
[CrossRef]

Clerambault, H.

P. Robert, F. Trolez, E. Bercier, H. Clerambault, A. Touvignon, and J. L. Tissot, in Proceedings of the IRSf2 2013 (2013), p. 24 .

Cogburn, G.

G. Cogburn, A. Symmons, and L. Mertus, Proc. SPIE 7660, 766020 (2010).
[CrossRef]

Cruz-Cabrera, A. A.

J. Choi, A. A. Cruz-Cabrera, and A. Tanbakuchi, Proc. SPIE 8612, 86120G (2013).
[CrossRef]

Falkis, D.

Gläbe, R.

R. Gläbe and O. Riemer, Proc. SPIE 7716, 771602 (2010).
[CrossRef]

Goodman, J. W.

J. W. Goodman, in Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005), Chap. 6, pp. 138–145.

Kathman, A. D.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, in Diffractive Optics: Design, Fabrication, and Test (SPIE, 2004), Chap. 7, pp. 133–147.

Liping, Z.

Z. Liping, L. Y. Loy, Z. Yan, and Y. Zhisheng, Proc. SPIE 3897, 624 (1999).
[CrossRef]

Loy, L. Y.

Z. Liping, L. Y. Loy, Z. Yan, and Y. Zhisheng, Proc. SPIE 3897, 624 (1999).
[CrossRef]

Mait, J. N.

G. P. Behrmann and J. N. Mait, in Micro-Optics: Elements, Systems and Applications (CRC Press, 1997), Chap. 10, pp. 259–292.

Matsumoto, K.

T. Takahata, K. Matsumoto, and I. Shimoyama, in The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (2013), p. 1408.

Mertus, L.

G. Cogburn, A. Symmons, and L. Mertus, Proc. SPIE 7660, 766020 (2010).
[CrossRef]

Miyamoto, K.

Morris, G. M.

O’Shea, D. C.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, in Diffractive Optics: Design, Fabrication, and Test (SPIE, 2004), Chap. 7, pp. 133–147.

Pini, R.

A. Symmons and R. Pini, Proc. SPIE 8704, 870425 (2013).
[CrossRef]

Prather, D. W.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, in Diffractive Optics: Design, Fabrication, and Test (SPIE, 2004), Chap. 7, pp. 133–147.

Riemer, O.

R. Gläbe and O. Riemer, Proc. SPIE 7716, 771602 (2010).
[CrossRef]

Robert, P.

P. Robert, F. Trolez, E. Bercier, H. Clerambault, A. Touvignon, and J. L. Tissot, in Proceedings of the IRSf2 2013 (2013), p. 24 .

Rogalski, A.

A. Rogalski, Infrared Phys. Technol. 43, 187 (2002).
[CrossRef]

Rogers, P. J.

A. P. Wood and P. J. Rogers, Proc. SPIE 5865, 58650B (2005).
[CrossRef]

Shimoyama, I.

T. Takahata, K. Matsumoto, and I. Shimoyama, in The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (2013), p. 1408.

Sommargen, G. E.

Suleski, T. J.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, in Diffractive Optics: Design, Fabrication, and Test (SPIE, 2004), Chap. 7, pp. 133–147.

Swanson, G. J.

G. J. Swanson, “Binary optics technology: the theory and design of multi-level diffractive optical elements,” , Massachusetts Institute of Technology, Lincoln Laboratory (1989).

Sweeney, D. W.

Symmons, A.

A. Symmons and R. Pini, Proc. SPIE 8704, 870425 (2013).
[CrossRef]

G. Cogburn, A. Symmons, and L. Mertus, Proc. SPIE 7660, 766020 (2010).
[CrossRef]

Takahata, T.

T. Takahata, K. Matsumoto, and I. Shimoyama, in The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (2013), p. 1408.

Tanbakuchi, A.

J. Choi, A. A. Cruz-Cabrera, and A. Tanbakuchi, Proc. SPIE 8612, 86120G (2013).
[CrossRef]

Tissot, J. L.

P. Robert, F. Trolez, E. Bercier, H. Clerambault, A. Touvignon, and J. L. Tissot, in Proceedings of the IRSf2 2013 (2013), p. 24 .

Touvignon, A.

P. Robert, F. Trolez, E. Bercier, H. Clerambault, A. Touvignon, and J. L. Tissot, in Proceedings of the IRSf2 2013 (2013), p. 24 .

Trolez, F.

P. Robert, F. Trolez, E. Bercier, H. Clerambault, A. Touvignon, and J. L. Tissot, in Proceedings of the IRSf2 2013 (2013), p. 24 .

Wood, A. P.

A. P. Wood and P. J. Rogers, Proc. SPIE 5865, 58650B (2005).
[CrossRef]

Yan, Z.

Z. Liping, L. Y. Loy, Z. Yan, and Y. Zhisheng, Proc. SPIE 3897, 624 (1999).
[CrossRef]

Zhisheng, Y.

Z. Liping, L. Y. Loy, Z. Yan, and Y. Zhisheng, Proc. SPIE 3897, 624 (1999).
[CrossRef]

Appl. Opt.

Infrared Phys. Technol.

A. Rogalski, Infrared Phys. Technol. 43, 187 (2002).
[CrossRef]

J. Opt. Soc. Am.

Proc. SPIE

R. Gläbe and O. Riemer, Proc. SPIE 7716, 771602 (2010).
[CrossRef]

J. Choi, A. A. Cruz-Cabrera, and A. Tanbakuchi, Proc. SPIE 8612, 86120G (2013).
[CrossRef]

G. Cogburn, A. Symmons, and L. Mertus, Proc. SPIE 7660, 766020 (2010).
[CrossRef]

A. Symmons and R. Pini, Proc. SPIE 8704, 870425 (2013).
[CrossRef]

Z. Liping, L. Y. Loy, Z. Yan, and Y. Zhisheng, Proc. SPIE 3897, 624 (1999).
[CrossRef]

A. P. Wood and P. J. Rogers, Proc. SPIE 5865, 58650B (2005).
[CrossRef]

Other

G. J. Swanson, “Binary optics technology: the theory and design of multi-level diffractive optical elements,” , Massachusetts Institute of Technology, Lincoln Laboratory (1989).

J. W. Goodman, in Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005), Chap. 6, pp. 138–145.

P. Robert, F. Trolez, E. Bercier, H. Clerambault, A. Touvignon, and J. L. Tissot, in Proceedings of the IRSf2 2013 (2013), p. 24 .

G. P. Behrmann and J. N. Mait, in Micro-Optics: Elements, Systems and Applications (CRC Press, 1997), Chap. 10, pp. 259–292.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, in Diffractive Optics: Design, Fabrication, and Test (SPIE, 2004), Chap. 7, pp. 133–147.

T. Takahata, K. Matsumoto, and I. Shimoyama, in The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (2013), p. 1408.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) First-order Fresnel lens. (b)  m 0 th order Fresnel lens. Formulas are given in the paraxial approximation.

Fig. 2.
Fig. 2.

Setup of the built LWIR ultracompact landscape lens with a 12th order Fresnel lens in silicon. The three insets show the surface relief of the Fresnel lens on the illuminated area for three different field angles. (Red, θ = 0 ° ; blue, θ = 30 ° ; green, θ = 65 ° ).

Fig. 3.
Fig. 3.

(a) Picture of the Fresnel lens. (b) Picture of the camera.

Fig. 4.
Fig. 4.

Test bench for MTF measurements.

Fig. 5.
Fig. 5.

System MTF for different field angles θ . (a)  θ = 0 ° , (b)  θ = 30 ° , (c)  θ = 50 ° . The maximum abscissa value corresponds to the Nyquist frequency of our detector.

Fig. 6.
Fig. 6.

Picture taken with our camera.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

m λ f = m 0 λ 0 f 0 ,
η m , λ = sinc 2 ( m λ 0 ( n ( λ ) 1 ) λ ( n ( λ 0 ) 1 ) m 0 ) .

Metrics