Abstract

We demonstrate the generation of plasmonic bottle-beams based on self-accelerating surface plasmons. These beams are excited from free-space beams through a special binary phase mask. The mask generates two mirror-imaged self-accelerating surface plasmons, which form the plasmonic bottle-beam and a hot-spot at the point of convergence. The shape and area of the bottle-beams, together with the location of the hot-spot, are statically controlled by designing arbitrary convex trajectories for the two counter-accelerating beams and also are dynamically controlled by the illumination beam.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Arlt and M. J. Padgett, Opt. Lett. 25, 191 (2000).
    [CrossRef]
  2. D. G. Grier, Nature 424, 6950 (2003).
  3. R. Ozeri, L. Khaykovich, and N. Davidson, Phys. Rev. A 59, R1750 (1999).
    [CrossRef]
  4. L. Cacciapuoti, M. de Angelis, G. Pierattini, and G. M. Tino, Eur. Phys. J. D 14, 373 (2001).
    [CrossRef]
  5. A. Kaplan, N. Friedman, and N. Davidson, J. Opt. Soc. Am. B 19, 1233 (2002).
    [CrossRef]
  6. D. McGloin, G. C. Spaldinga, H. Melvillea, W. Sibbetta, and K. Dholakia, Opt. Commun. 225, 215 (2003).
    [CrossRef]
  7. D. Yelin, B. E. Bouma, and G. J. Tearney, Opt. Lett. 29, 661 (2004).
    [CrossRef]
  8. D. Cojoc, S. Cabrini, E. Ferrari, R. Malureanu, M. B. Danailov, and E. Di Fabrizio, Microelectron. Eng. 73, 927 (2004).
    [CrossRef]
  9. S. H. Tao, X. C. Yuan, and B. S. Ahluwalia, J. Opt. A 7, 40 (2005).
    [CrossRef]
  10. C. Alpmann, M. Esseling, P. Rose, and C. Denz, Appl. Phys. Lett. 100, 111101 (2012).
    [CrossRef]
  11. C. H. Chen, P. T. Tai, and W. F. Hsieh, Appl. Opt. 43, 6001 (2004).
    [CrossRef]
  12. P. T. Tai, W. F. Hsieh, and C. H. Chen, Opt. Express 12, 5827 (2004).
    [CrossRef]
  13. I. Chremmos, P. Zhang, J. Prakash, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, Opt. Lett. 36, 3675 (2011).
    [CrossRef]
  14. P. Zhang, Z. Zhang, J. Prakash, S. Huang, D. Hernandez, M. Salazar, D. N. Christodoulides, and Z. Chen, Opt. Lett. 36, 1491 (2011).
    [CrossRef]
  15. P. Genevet, J. Dellinger, R. Blanchard, A. She, M. Petit, B. Cluzel, M. A. Kats, F. d. Fornel, and F. Capasso, Opt. Express 21, 10295 (2013).
    [CrossRef]
  16. S. Wei, J. Lin, R. Wang, Q. Wang, G. Yuan, L. Du, Y. Wang, X. Luo, M. Hong, C. Min, and X. Yuan, Opt. Lett. 38, 2783 (2013).
    [CrossRef]
  17. I. Epstein and A. Arie, Phys. Rev. Lett. 112, 023903 (2014).
    [CrossRef]
  18. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
    [CrossRef]
  19. M. A. Bandres and B. M. Rodŕıguez-Lara, New J. Phys. 15, 013054 (2013).
    [CrossRef]
  20. P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, Phys. Rev. Lett. 109, 193901 (2012).
    [CrossRef]
  21. E. Greenfield, M. Segev, W. Walasik, and O. Raz, Phys. Rev. Lett. 106, 213902 (2011).
    [CrossRef]
  22. L. Froehly, F. Courvoisier, A. Mathis, M. Jacquot, L. Furfaro, R. Giust, P. A. Lacourt, and J. M. Dudley, Opt. Express 19, 16455 (2011).
    [CrossRef]
  23. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  24. A. E. Klein, A. Minovich, M. Steinert, N. Janunts, A. Tünnermann, D. N. Neshev, Y. S. Kivshar, and T. Pertsch, Opt. Lett. 37, 3402 (2012).
    [CrossRef]
  25. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Opt. Lett. 33, 207 (2008).
    [CrossRef]
  26. Y. Hu, P. Zhang, C. Lou, S. Huang, J. Xu, and Z. Chen, Opt. Lett. 35, 2260 (2010).
    [CrossRef]
  27. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1068 (1995).
    [CrossRef]

2014 (1)

I. Epstein and A. Arie, Phys. Rev. Lett. 112, 023903 (2014).
[CrossRef]

2013 (3)

2012 (3)

A. E. Klein, A. Minovich, M. Steinert, N. Janunts, A. Tünnermann, D. N. Neshev, Y. S. Kivshar, and T. Pertsch, Opt. Lett. 37, 3402 (2012).
[CrossRef]

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, Phys. Rev. Lett. 109, 193901 (2012).
[CrossRef]

C. Alpmann, M. Esseling, P. Rose, and C. Denz, Appl. Phys. Lett. 100, 111101 (2012).
[CrossRef]

2011 (4)

2010 (1)

2008 (1)

2007 (1)

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

2005 (1)

S. H. Tao, X. C. Yuan, and B. S. Ahluwalia, J. Opt. A 7, 40 (2005).
[CrossRef]

2004 (4)

2003 (2)

D. G. Grier, Nature 424, 6950 (2003).

D. McGloin, G. C. Spaldinga, H. Melvillea, W. Sibbetta, and K. Dholakia, Opt. Commun. 225, 215 (2003).
[CrossRef]

2002 (1)

2001 (1)

L. Cacciapuoti, M. de Angelis, G. Pierattini, and G. M. Tino, Eur. Phys. J. D 14, 373 (2001).
[CrossRef]

2000 (1)

1999 (1)

R. Ozeri, L. Khaykovich, and N. Davidson, Phys. Rev. A 59, R1750 (1999).
[CrossRef]

1995 (1)

Ahluwalia, B. S.

S. H. Tao, X. C. Yuan, and B. S. Ahluwalia, J. Opt. A 7, 40 (2005).
[CrossRef]

Alpmann, C.

C. Alpmann, M. Esseling, P. Rose, and C. Denz, Appl. Phys. Lett. 100, 111101 (2012).
[CrossRef]

Arie, A.

I. Epstein and A. Arie, Phys. Rev. Lett. 112, 023903 (2014).
[CrossRef]

Arlt, J.

Bandres, M. A.

M. A. Bandres and B. M. Rodŕıguez-Lara, New J. Phys. 15, 013054 (2013).
[CrossRef]

Blanchard, R.

Bouma, B. E.

Broky, J.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Opt. Lett. 33, 207 (2008).
[CrossRef]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

Cabrini, S.

D. Cojoc, S. Cabrini, E. Ferrari, R. Malureanu, M. B. Danailov, and E. Di Fabrizio, Microelectron. Eng. 73, 927 (2004).
[CrossRef]

Cacciapuoti, L.

L. Cacciapuoti, M. de Angelis, G. Pierattini, and G. M. Tino, Eur. Phys. J. D 14, 373 (2001).
[CrossRef]

Cannan, D.

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, Phys. Rev. Lett. 109, 193901 (2012).
[CrossRef]

Capasso, F.

Chen, C. H.

Chen, Z.

Chremmos, I.

Christodoulides, D. N.

Cluzel, B.

Cojoc, D.

D. Cojoc, S. Cabrini, E. Ferrari, R. Malureanu, M. B. Danailov, and E. Di Fabrizio, Microelectron. Eng. 73, 927 (2004).
[CrossRef]

Courvoisier, F.

Danailov, M. B.

D. Cojoc, S. Cabrini, E. Ferrari, R. Malureanu, M. B. Danailov, and E. Di Fabrizio, Microelectron. Eng. 73, 927 (2004).
[CrossRef]

Davidson, N.

A. Kaplan, N. Friedman, and N. Davidson, J. Opt. Soc. Am. B 19, 1233 (2002).
[CrossRef]

R. Ozeri, L. Khaykovich, and N. Davidson, Phys. Rev. A 59, R1750 (1999).
[CrossRef]

de Angelis, M.

L. Cacciapuoti, M. de Angelis, G. Pierattini, and G. M. Tino, Eur. Phys. J. D 14, 373 (2001).
[CrossRef]

Dellinger, J.

Denz, C.

C. Alpmann, M. Esseling, P. Rose, and C. Denz, Appl. Phys. Lett. 100, 111101 (2012).
[CrossRef]

Dholakia, K.

D. McGloin, G. C. Spaldinga, H. Melvillea, W. Sibbetta, and K. Dholakia, Opt. Commun. 225, 215 (2003).
[CrossRef]

Di Fabrizio, E.

D. Cojoc, S. Cabrini, E. Ferrari, R. Malureanu, M. B. Danailov, and E. Di Fabrizio, Microelectron. Eng. 73, 927 (2004).
[CrossRef]

Dogariu, A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Opt. Lett. 33, 207 (2008).
[CrossRef]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

Du, L.

Dudley, J. M.

Efremidis, N. K.

Epstein, I.

I. Epstein and A. Arie, Phys. Rev. Lett. 112, 023903 (2014).
[CrossRef]

Esseling, M.

C. Alpmann, M. Esseling, P. Rose, and C. Denz, Appl. Phys. Lett. 100, 111101 (2012).
[CrossRef]

Ferrari, E.

D. Cojoc, S. Cabrini, E. Ferrari, R. Malureanu, M. B. Danailov, and E. Di Fabrizio, Microelectron. Eng. 73, 927 (2004).
[CrossRef]

Fornel, F. d.

Friedman, N.

Froehly, L.

Furfaro, L.

Gaylord, T. K.

Genevet, P.

Giust, R.

Grann, E. B.

Greenfield, E.

E. Greenfield, M. Segev, W. Walasik, and O. Raz, Phys. Rev. Lett. 106, 213902 (2011).
[CrossRef]

Grier, D. G.

D. G. Grier, Nature 424, 6950 (2003).

Hernandez, D.

Hong, M.

Hsieh, W. F.

Hu, Y.

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, Phys. Rev. Lett. 109, 193901 (2012).
[CrossRef]

Y. Hu, P. Zhang, C. Lou, S. Huang, J. Xu, and Z. Chen, Opt. Lett. 35, 2260 (2010).
[CrossRef]

Huang, S.

Jacquot, M.

Janunts, N.

Kaplan, A.

Kats, M. A.

Khaykovich, L.

R. Ozeri, L. Khaykovich, and N. Davidson, Phys. Rev. A 59, R1750 (1999).
[CrossRef]

Kivshar, Y. S.

Klein, A. E.

Lacourt, P. A.

Li, T.

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, Phys. Rev. Lett. 109, 193901 (2012).
[CrossRef]

Lin, J.

Lou, C.

Luo, X.

Maier, S.

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Malureanu, R.

D. Cojoc, S. Cabrini, E. Ferrari, R. Malureanu, M. B. Danailov, and E. Di Fabrizio, Microelectron. Eng. 73, 927 (2004).
[CrossRef]

Mathis, A.

McGloin, D.

D. McGloin, G. C. Spaldinga, H. Melvillea, W. Sibbetta, and K. Dholakia, Opt. Commun. 225, 215 (2003).
[CrossRef]

Melvillea, H.

D. McGloin, G. C. Spaldinga, H. Melvillea, W. Sibbetta, and K. Dholakia, Opt. Commun. 225, 215 (2003).
[CrossRef]

Min, C.

Minovich, A.

Moharam, M. G.

Morandotti, R.

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, Phys. Rev. Lett. 109, 193901 (2012).
[CrossRef]

Neshev, D. N.

Ozeri, R.

R. Ozeri, L. Khaykovich, and N. Davidson, Phys. Rev. A 59, R1750 (1999).
[CrossRef]

Padgett, M. J.

Pertsch, T.

Petit, M.

Pierattini, G.

L. Cacciapuoti, M. de Angelis, G. Pierattini, and G. M. Tino, Eur. Phys. J. D 14, 373 (2001).
[CrossRef]

Pommet, D. A.

Prakash, J.

Raz, O.

E. Greenfield, M. Segev, W. Walasik, and O. Raz, Phys. Rev. Lett. 106, 213902 (2011).
[CrossRef]

Rodriguez-Lara, B. M.

M. A. Bandres and B. M. Rodŕıguez-Lara, New J. Phys. 15, 013054 (2013).
[CrossRef]

Rose, P.

C. Alpmann, M. Esseling, P. Rose, and C. Denz, Appl. Phys. Lett. 100, 111101 (2012).
[CrossRef]

Salazar, M.

Segev, M.

E. Greenfield, M. Segev, W. Walasik, and O. Raz, Phys. Rev. Lett. 106, 213902 (2011).
[CrossRef]

She, A.

Sibbetta, W.

D. McGloin, G. C. Spaldinga, H. Melvillea, W. Sibbetta, and K. Dholakia, Opt. Commun. 225, 215 (2003).
[CrossRef]

Siviloglou, G. A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Opt. Lett. 33, 207 (2008).
[CrossRef]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

Spaldinga, G. C.

D. McGloin, G. C. Spaldinga, H. Melvillea, W. Sibbetta, and K. Dholakia, Opt. Commun. 225, 215 (2003).
[CrossRef]

Steinert, M.

Tai, P. T.

Tao, S. H.

S. H. Tao, X. C. Yuan, and B. S. Ahluwalia, J. Opt. A 7, 40 (2005).
[CrossRef]

Tearney, G. J.

Tino, G. M.

L. Cacciapuoti, M. de Angelis, G. Pierattini, and G. M. Tino, Eur. Phys. J. D 14, 373 (2001).
[CrossRef]

Tünnermann, A.

Walasik, W.

E. Greenfield, M. Segev, W. Walasik, and O. Raz, Phys. Rev. Lett. 106, 213902 (2011).
[CrossRef]

Wang, Q.

Wang, R.

Wang, Y.

Wei, S.

Xu, J.

Yelin, D.

Yin, X.

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, Phys. Rev. Lett. 109, 193901 (2012).
[CrossRef]

Yuan, G.

Yuan, X.

Yuan, X. C.

S. H. Tao, X. C. Yuan, and B. S. Ahluwalia, J. Opt. A 7, 40 (2005).
[CrossRef]

Zhang, P.

Zhang, X.

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, Phys. Rev. Lett. 109, 193901 (2012).
[CrossRef]

Zhang, Z.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. Alpmann, M. Esseling, P. Rose, and C. Denz, Appl. Phys. Lett. 100, 111101 (2012).
[CrossRef]

Eur. Phys. J. D (1)

L. Cacciapuoti, M. de Angelis, G. Pierattini, and G. M. Tino, Eur. Phys. J. D 14, 373 (2001).
[CrossRef]

J. Opt. A (1)

S. H. Tao, X. C. Yuan, and B. S. Ahluwalia, J. Opt. A 7, 40 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Microelectron. Eng. (1)

D. Cojoc, S. Cabrini, E. Ferrari, R. Malureanu, M. B. Danailov, and E. Di Fabrizio, Microelectron. Eng. 73, 927 (2004).
[CrossRef]

Nature (1)

D. G. Grier, Nature 424, 6950 (2003).

New J. Phys. (1)

M. A. Bandres and B. M. Rodŕıguez-Lara, New J. Phys. 15, 013054 (2013).
[CrossRef]

Opt. Commun. (1)

D. McGloin, G. C. Spaldinga, H. Melvillea, W. Sibbetta, and K. Dholakia, Opt. Commun. 225, 215 (2003).
[CrossRef]

Opt. Express (3)

Opt. Lett. (8)

Phys. Rev. A (1)

R. Ozeri, L. Khaykovich, and N. Davidson, Phys. Rev. A 59, R1750 (1999).
[CrossRef]

Phys. Rev. Lett. (4)

I. Epstein and A. Arie, Phys. Rev. Lett. 112, 023903 (2014).
[CrossRef]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, Phys. Rev. Lett. 109, 193901 (2012).
[CrossRef]

E. Greenfield, M. Segev, W. Walasik, and O. Raz, Phys. Rev. Lett. 106, 213902 (2011).
[CrossRef]

Other (1)

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Optical setup: a fiber-coupled laser diode was followed by a beam expander and a cylindrical lens to adjust the aspect ratio of the illuminating beam to fit to that of the plasmonic mask. An objective lens was used to focus the beam onto the mask, and an NSOM system was used to measure the plasmonic light intensity.

Fig. 2.
Fig. 2.

(a), (d) Simulation and (b), (e) measurement of the generated parabolic and quartic plasmonic bottle-beam, respectively. The solid purple curves depict the analytical trajectories y = a z 2 , with a = 8.889 × 10 3 , and y = b z 4 , with b = 1.024 × 10 4 , in micrometer units. (c), (f) SEM images of the fabricated parabolic and quartic binary plasmonic phase masks, respectively, which generated the beams. Due to the high aspect ratio of the quartic mask, only the middle part of it is shown.

Fig. 3.
Fig. 3.

NSOM measurements of the generated plasmonic bottle beams under different illumination conditions. (a) and (c) are at the edges of the Gaussian and (b) is at the center of the Gaussian.

Fig. 4.
Fig. 4.

Example of a plasmonic bottle-beam circumventing a 10 μm × 10 μm rectangular obstacle. (a) NSOM measurement. (b) Simultaneously measured topography of (a).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d ϕ i ( y ) d y = k f ( z ) 1 + [ f ( z ) ] 2 ,
k spp = k in + k G ,
t ( z , y ) = h 0 2 { 1 + sgn [ cos ( 2 π Λ z + ϕ i ( y ) ) ] } ,

Metrics