Abstract

We propose and demonstrate generation of Brillouin dynamic grating (BDG) in a few-mode fiber (FMF) with a Gaussian pulse pump and a counterpropagating continuous wave pump in LP01 mode. Brillouin optical time-domain analysis (BOTDA) is achieved by launching a third Gaussian pulse probe in LP11 mode. With coherent detection and time-domain analysis on the backreflected probe signal, the modal birefringence of the FMF is characterized via the distributed BDG with high spatial resolution and high accuracy.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, J. Lightwave Technol. 28, 662 (2010).
    [CrossRef]
  2. A. Li, A. Al Amin, X. Chen, and W. Shieh, Opt. Express 19, 8808 (2011).
    [CrossRef]
  3. A. Li, A. A. Amin, X. Chen, S. Chen, G. Gao, and W. Shieh, J. Lightwave Technol. 30, 634 (2012).
    [CrossRef]
  4. C. Koebele, M. Salsi, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, and G. Charlet, Opt. Express 19, 16593 (2011).
    [CrossRef]
  5. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle, Opt. Express 19, 16697 (2011).
    [CrossRef]
  6. C. Antonelli, A. Mecozzi, M. Shtaif, and P. J. Winzer, Opt. Express 20, 11718 (2012).
    [CrossRef]
  7. T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, IEICE Trans. Commun. E76-B, 382 (1993).
  8. T. Horiguchi and M. Tateda, J. Lightwave Technol. 7, 1170 (1989).
    [CrossRef]
  9. W. Zou, Z. He, and K. Hotate, Opt. Express 17, 1248 (2009).
    [CrossRef]
  10. K. Y. Song, Opt. Lett. 36, 4686 (2011).
    [CrossRef]
  11. Y. Dong, L. Chen, and X. Bao, Opt. Lett. 35, 193 (2010).
    [CrossRef]
  12. Y. Dong, H. Zhang, Z. Lu, L. Chen, and X. Bao, J. Lightwave Technol. 31, 2981 (2013).
  13. K. Y. Song, Y. H. Kim, and B. Y. Kim, Opt. Lett. 38, 1805 (2013).
    [CrossRef]
  14. S. Li, M.-J. Li, and R. S. Vodhanel, Opt. Lett. 37, 4660 (2012).
    [CrossRef]
  15. A. Li, Q. Hu, and W. Shieh, Opt. Express 21, 31894 (2013).
    [CrossRef]

2013 (3)

2012 (3)

2011 (4)

2010 (2)

2009 (1)

1993 (1)

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, IEICE Trans. Commun. E76-B, 382 (1993).

1989 (1)

T. Horiguchi and M. Tateda, J. Lightwave Technol. 7, 1170 (1989).
[CrossRef]

Al Amin, A.

Amin, A. A.

Antonelli, C.

Astruc, M.

Bao, X.

Bigo, S.

Bolle, C. A.

Boutin, A.

Brindel, P.

Cerou, F.

Charlet, G.

Chen, L.

Chen, S.

Chen, X.

Dong, Y.

Essiambre, R.

Essiambre, R.-J.

Foschini, G. J.

Furukawa, S.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, IEICE Trans. Commun. E76-B, 382 (1993).

Gao, G.

Gnauck, A. H.

Goebel, B.

He, Z.

Horiguchi, T.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, IEICE Trans. Commun. E76-B, 382 (1993).

T. Horiguchi and M. Tateda, J. Lightwave Technol. 7, 1170 (1989).
[CrossRef]

Hotate, K.

Hu, Q.

Izumita, H.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, IEICE Trans. Commun. E76-B, 382 (1993).

Kim, B. Y.

Kim, Y. H.

Koebele, C.

Koyamada, Y.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, IEICE Trans. Commun. E76-B, 382 (1993).

Kramer, G.

Kurashima, T.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, IEICE Trans. Commun. E76-B, 382 (1993).

Li, A.

Li, M.-J.

Li, S.

Lingle, R.

Lu, Z.

Mardoyan, H.

McCurdy, A.

Mecozzi, A.

Peckham, D. W.

Provost, L.

Randel, S.

Ryf, R.

Salsi, M.

Shieh, W.

Shtaif, M.

Sierra, A.

Sillard, P.

Song, K. Y.

Sperti, D.

Tateda, M.

T. Horiguchi and M. Tateda, J. Lightwave Technol. 7, 1170 (1989).
[CrossRef]

Tran, P.

Verluise, F.

Vodhanel, R. S.

Winzer, P. J.

Zhang, H.

Zou, W.

IEICE Trans. Commun. (1)

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, IEICE Trans. Commun. E76-B, 382 (1993).

J. Lightwave Technol. (4)

Opt. Express (6)

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

BDG generation and readout in a FMF. (a) Schematic diagram and (b) wavelength relationship between pump 1, 2, probe and the BDG reflected probe. λ B : Brillouin wavelength shift.

Fig. 2.
Fig. 2.

Schematic diagram of (a) a free-space mode launcher (FSML) and (b) a free-space mode combiner (FSMC). BS, 50 50 nonpolarizing beamsplitter; SMF, single-mode fiber; TMF, two-mode fiber. The small image before or after arrow shows the near field mode pattern observed by an infrared CCD camera.

Fig. 3.
Fig. 3.

Experimental setup for the BDG generation and readout in a 4 km TMF. IM, intensity modulator; EOM, electro-optic modulator; AFG, arbitrary function generator; OBPF, optical band-pass filter; MS, mode stripper; MC, mode converter; PBS, polarization beam splitter; TDS, time-domain (sampling) scope. Inset, (i) optical spectrum of pump 2 after OBPF.

Fig. 4.
Fig. 4.

Optical spectrum of the back-reflected signal observed by a high-resolution OSA. The wavelength of probe wave ( λ 2 ) is 1546.82 nm where the BDG reflection becomes clearly visible.

Fig. 5.
Fig. 5.

Time-domain trace (in-phase product) of received back-reflected probe signal acquired by two synchronized 50 GSa / s Tektronix oscilloscopes. (a)–(d) Received signal in LP 11 ax , LP 11 ay , LP 11 bx , and LP 11 by mode, where subscript “x” and “y” denote orthogonal polarizations in each mode.

Fig. 6.
Fig. 6.

Spectra of received back-reflected probe signal acquired by two synchronized 50 GSa / s Tektronix oscilloscopes, 0–100 m FMF.

Fig. 7.
Fig. 7.

Measured power of backreflected probe versus wavelength for the schemes: (a) without BDG, probe launched in LP 11 a mode, (b) with BDG, probe launched in LP 11 a mode, (c) without BDG, probe launched in LP 11 b mode, and (d) with BDG, probe launched in LP 11 b mode. For (b) and (d), BDG reflectance for 0–100 m FMF is shown.

Fig. 8.
Fig. 8.

Measured total power (dot) of BDG reflectance versus wavelength for 0–100 m FMF for probe launched into (a)  LP 11 a mode and (b)  LP 11 b mode.

Fig. 9.
Fig. 9.

Measured BDG reflectance versus fiber length when probe wave is launched into (a)  LP 11 a mode and (b)  LP 11 b mode for 0–1 km FMF. The spatial resolution is 100 m.

Fig. 10.
Fig. 10.

Measured distributed modal birefringence Δ n between LP 11 mode and LP 01 mode ( n = 1.449788 ) for (a) 0–500 m FMF and (b) 500–1000 m FMF. The spatial resolution is 3 m.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = λ 1 λ 2 = ( n i n j ) λ 1 / n i ,

Metrics