Abstract

We show that the differential matrix of a uniform homogeneous medium containing birefringence may not be uniquely determined from its Mueller matrix, resulting in the potential existence of an infinite set of elementary polarization properties parameterized by an integer parameter. The uniqueness depends on the symmetry properties of a special differential matrix derived from the eigenvalue decomposition of the Mueller matrix. The conditions for the uniqueness of the differential matrix are identified, physically discussed, and illustrated in examples from the literature.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. A. Azzam, J. Opt. Soc. Am. 68, 1756 (1978).
    [CrossRef]
  2. R. Ossikovski, Opt. Lett. 36, 2330 (2011).
    [CrossRef]
  3. N. Ortega-Quijano and J. L. Arce-Diego, Opt. Lett. 36, 2429 (2011).
    [CrossRef]
  4. R. A. Chipman, in Handbook of Optics, 3rd ed. (McGraw Hill, 2009), Vol. 1.
  5. H. D. Noble and R. A. Chipman, Opt. Express 20, 17 (2012).
    [CrossRef]
  6. R. Ossikovski, Opt. Lett. 37, 220 (2012).
    [CrossRef]
  7. N. J. Higham, Functions of Matrices: Theory and Computation (SIAM, 2008).
  8. R. Ossikovski, J. Opt. Soc. Am. A 27, 123 (2010).
    [CrossRef]
  9. R. Ossikovski and V. Devlaminck, Opt. Lett. 39, 1216 (2014).
    [CrossRef]
  10. R. Ossikovski, M. Anastasiadou, and A. De Martino, Opt. Commun. 281, 2406 (2008).
    [CrossRef]
  11. C. Whitney, J. Opt. Soc. Am. 61, 1207 (1971).
    [CrossRef]
  12. O. Arteaga, A. Canillas, and G. E. Jellison, Appl. Opt. 48, 5307 (2009).
    [CrossRef]
  13. O. Arteaga and A. Canillas, Opt. Lett. 35, 559 (2010).
    [CrossRef]
  14. O. Arteaga and A. Canillas, Opt. Lett. 35, 3525 (2010).
    [CrossRef]
  15. N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, and I. A. Vitkin, J. Biophotonics 2, 145 (2009).
    [CrossRef]

2014 (1)

2012 (2)

2011 (2)

2010 (3)

2009 (2)

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, and I. A. Vitkin, J. Biophotonics 2, 145 (2009).
[CrossRef]

O. Arteaga, A. Canillas, and G. E. Jellison, Appl. Opt. 48, 5307 (2009).
[CrossRef]

2008 (1)

R. Ossikovski, M. Anastasiadou, and A. De Martino, Opt. Commun. 281, 2406 (2008).
[CrossRef]

1978 (1)

1971 (1)

Anastasiadou, M.

R. Ossikovski, M. Anastasiadou, and A. De Martino, Opt. Commun. 281, 2406 (2008).
[CrossRef]

Arce-Diego, J. L.

Arteaga, O.

Azzam, R. M. A.

Canillas, A.

Chipman, R. A.

H. D. Noble and R. A. Chipman, Opt. Express 20, 17 (2012).
[CrossRef]

R. A. Chipman, in Handbook of Optics, 3rd ed. (McGraw Hill, 2009), Vol. 1.

De Martino, A.

R. Ossikovski, M. Anastasiadou, and A. De Martino, Opt. Commun. 281, 2406 (2008).
[CrossRef]

Devlaminck, V.

Ghosh, N.

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, and I. A. Vitkin, J. Biophotonics 2, 145 (2009).
[CrossRef]

Higham, N. J.

N. J. Higham, Functions of Matrices: Theory and Computation (SIAM, 2008).

Jellison, G. E.

Li, R.

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, and I. A. Vitkin, J. Biophotonics 2, 145 (2009).
[CrossRef]

Li, S.

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, and I. A. Vitkin, J. Biophotonics 2, 145 (2009).
[CrossRef]

Noble, H. D.

Ortega-Quijano, N.

Ossikovski, R.

Vitkin, I. A.

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, and I. A. Vitkin, J. Biophotonics 2, 145 (2009).
[CrossRef]

Weisel, R. D.

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, and I. A. Vitkin, J. Biophotonics 2, 145 (2009).
[CrossRef]

Whitney, C.

Wilson, B. C.

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, and I. A. Vitkin, J. Biophotonics 2, 145 (2009).
[CrossRef]

Wood, M. F. G.

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, and I. A. Vitkin, J. Biophotonics 2, 145 (2009).
[CrossRef]

Appl. Opt. (1)

J. Biophotonics (1)

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, and I. A. Vitkin, J. Biophotonics 2, 145 (2009).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

R. Ossikovski, M. Anastasiadou, and A. De Martino, Opt. Commun. 281, 2406 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Other (2)

N. J. Higham, Functions of Matrices: Theory and Computation (SIAM, 2008).

R. A. Chipman, in Handbook of Optics, 3rd ed. (McGraw Hill, 2009), Vol. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (22)

Equations on this page are rendered with MathJax. Learn more.

d M ( z ) d z = m ( z ) M ( z ) .
M ( z ) = exp ( z m ) ,
m = ln M .
M = Q J Q 1 with J = [ λ 1 0 0 0 0 λ 2 0 0 0 0 a b 0 0 b a ] ,
S = [ 1 0 0 0 0 1 0 0 0 0 1 i 0 0 i 1 ] ,
m = ln M = Q Ln J Q 1 + p Q Δ J Q 1 = m 0 + p Δ m ,
Ln J = [ ln λ 1 0 0 0 0 ln λ 2 0 0 0 0 ln | λ 3 | arg ( λ 3 ) 0 0 arg ( λ 3 ) ln | λ 3 | ]
Δ J = [ 0 0 0 0 0 0 0 0 0 0 0 2 π 0 0 2 π 0 ]
M = H U = H D R ,
ln M = ln R + ln D + ln H + N C ,
L = [ 1 0 0 0 0 1 0 0 0 0 cos α sin α 0 0 sin α cos α ] ,
ln L = [ 0 0 0 0 0 0 0 0 0 0 0 α 0 0 α 0 ] + p [ 0 0 0 0 0 0 0 0 0 0 0 2 π 0 0 2 π 0 ] = m L 0 + p Δ m L .
L ( z , p ) = exp [ z ( m L 0 + p Δ m L ) ] = exp ( z m L 0 ) exp ( z p Δ m L ) = L 0 ( z ) Δ L ( p z ) = Δ L ( p z ) L 0 ( z ) .
M ( z , p ) = exp [ z ( m 0 + p Δ m ) ] = exp ( z m 0 ) exp ( z p Δ m ) = M 0 ( z ) Δ M ( p z ) = Δ M ( p z ) M 0 ( z ) .
M ( z ) = H ( z ) D ( z ) R 0 ( z ) Δ R ( p z ) = M 0 ( z ) Δ R ( p z ) .
M 1 = [ 1 0.6125 0.3377 0.2433 0.5766 0.7807 0.0096 0.4176 0.3756 0.1007 0.6804 0.3459 0.2736 0.4551 0.3204 0.4656 ] ,
m 01 = Ln M 1 = [ 0.3974 0.8289 0.5102 0.0202 0.8289 0.3974 0.0778 0.6061 0.5102 0.0778 0.3974 0.4805 0.0202 0.6061 0.4805 0.3974 ] ,
Δ m 1 = [ 0 2.6940 7.1670 0.7126 2.6940 0 0.3862 3.5250 7.1670 0.3862 0 9.2755 0.7126 3.5250 9.2755 0 ] .
M 2 = [ 1 0.0185 0.0029 0.0042 0.0172 0.7569 0.0405 0.0462 0.0034 0.0524 0.5450 0.5466 0.0024 0.0070 0.6244 0.5967 ] ,
m 02 = Ln M 2 = [ 0.0002 0.0212 0.0020 0.0052 0.0198 0.2759 0.0748 0.0349 0.0041 0.0606 0.2359 0.7467 0.0013 0.0369 0.8503 0.1671 ]
Δ m 2 = [ 0.0001 0.0021 0.0014 0.0261 0.0007 0.0085 0.5542 0.3232 0.0249 0.4951 0.2676 5.8652 0.0090 0.2431 6.6834 0.2763 ] .
M 3 = [ 1 cos 2 ψ 0 0 cos 2 ψ 1 0 0 0 0 a sin 2 ψ cos Δ a sin 2 ψ sin Δ 0 0 a sin 2 ψ sin Δ a sin 2 ψ cos Δ ] ,

Metrics