Abstract

The influence of the degree of purity of a silicon nanoparticle on its resonances, either electric or magnetic, is assessed by using Mie theory as well as finite-element simulations. In particular, it is shown that the main effect of the increase of absorption due to the pollutants is observed in the magnetic resonances. Concerning Kerker’s conditions for the directionality of the scattering [J. Opt. Soc. Am. 73, 765 (1983)], it is found that both are strongly shifted when the material’s purity is varied. Resistive losses confirm the quenching of magnetic resonances, showing that the region of influence in the magnetic dipole resonance is much larger than in the electric one, although it has been found that losses are not critical for silicon content over 99.50%.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Exception for the zero-forward-scattering theory

B. García-Cámara, F. González, F. Moreno, and J. M. Saiz
J. Opt. Soc. Am. A 25(11) 2875-2878 (2008)

Sensing with magnetic dipolar resonances in semiconductor nanospheres

Braulio García-Cámara, Raquel Gómez-Medina, Juan José Sáenz, and Borja Sepúlveda
Opt. Express 21(20) 23007-23020 (2013)

Ultra-directional forward scattering by individual core-shell nanoparticles

Wei Liu, Jianfa Zhang, Bing Lei, Haotong Ma, Wenke Xie, and Haojun Hu
Opt. Express 22(13) 16178-16187 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (4)

» Media 1: MOV (678 KB)     
» Media 2: MOV (145 KB)     
» Media 3: MOV (720 KB)     
» Media 4: MOV (115 KB)     

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription