Abstract

This Letter proposes a mechanical impedance (MI) measurement technique using noncontact laser ultrasound. The ultrasound is generated by shooting a pulse laser beam onto a target structure, and its response is measured using a laser vibrometer. Once ultrasound propagation converges to structural vibration, MI is formed over the entire structure. Because noncontact lasers are utilized, this technique is applicable in harsh environments, free of electromagnetic interference, and able to perform wide-range scanning. The formation of MI and its feasibility for damage detection are verified through thermo-mechanical finite element analysis and lab-scale experiments.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Liang, F. P. Sun, and C. A. Rogers, J. Intell. Mater. Syst. Struct. 5, 12 (1994).
    [CrossRef]
  2. J. W. Ayres, F. Lalande, Z. Chaudhry, and C. A. Rogers, Smart Mater. Struct. 7, 599 (1998).
    [CrossRef]
  3. G. Park, H. Sohn, C. R. Farrar, and D. J. Inman, Shock Vib. Dig. 35, 451 (2003).
  4. B. L. Grisso and D. J. Inman, Smart Struct. Syst. 4, 305 (2008).
  5. V. Giurgiutiu, Structural Health Monitoring with Piezoelectric Wafer Active Sensors (Elsevier, 2008), p. 120.
  6. H. Lee, J. Yang, and H. Sohn, Struct. Health Monit. 11, 684 (2012).
  7. S. Bhalla and S. Moharana, J. Intell. Mater. Syst. Struct. 24, 33 (2012).
    [CrossRef]
  8. N. Sepehry, M. Shamshirsaz, and A. Bastani, Struct. Health Monit. 10, 171 (2011).
  9. C. B. Scruby and L. E. Drain, Laser Ultrasonics: Techniques and Applications (Taylor & Francis, 2008), p. 76.
  10. W. J. Staszewski, B. C. Lee, L. Mallet, and F. Scarpa, Smart Mater. Struct. 13, 251 (2004).
    [CrossRef]
  11. P. Castellini, M. Martarelli, and E. P. Toamasini, Mech. Sys. Sig. Pro. 20, 1265 (2006).
    [CrossRef]
  12. M. Salman and K. G. Sabra, J. Acoust. Soc. Am. 133, 1245 (2013).
    [CrossRef]
  13. J. Cuenca, F. Gautier, and L. Simon, J. Sound Vib. 322, 1048 (2009).
    [CrossRef]
  14. W. Liu and J. W. Hong, Proc. SPIE 8545, 854501 (2012).
    [CrossRef]
  15. R. L. Taylor, FEAP—A Finite Element Analysis Program, Version 8.2 User Manual (University of California at Berkeley, 2008).

2013 (1)

M. Salman and K. G. Sabra, J. Acoust. Soc. Am. 133, 1245 (2013).
[CrossRef]

2012 (3)

W. Liu and J. W. Hong, Proc. SPIE 8545, 854501 (2012).
[CrossRef]

H. Lee, J. Yang, and H. Sohn, Struct. Health Monit. 11, 684 (2012).

S. Bhalla and S. Moharana, J. Intell. Mater. Syst. Struct. 24, 33 (2012).
[CrossRef]

2011 (1)

N. Sepehry, M. Shamshirsaz, and A. Bastani, Struct. Health Monit. 10, 171 (2011).

2009 (1)

J. Cuenca, F. Gautier, and L. Simon, J. Sound Vib. 322, 1048 (2009).
[CrossRef]

2008 (1)

B. L. Grisso and D. J. Inman, Smart Struct. Syst. 4, 305 (2008).

2006 (1)

P. Castellini, M. Martarelli, and E. P. Toamasini, Mech. Sys. Sig. Pro. 20, 1265 (2006).
[CrossRef]

2004 (1)

W. J. Staszewski, B. C. Lee, L. Mallet, and F. Scarpa, Smart Mater. Struct. 13, 251 (2004).
[CrossRef]

2003 (1)

G. Park, H. Sohn, C. R. Farrar, and D. J. Inman, Shock Vib. Dig. 35, 451 (2003).

1998 (1)

J. W. Ayres, F. Lalande, Z. Chaudhry, and C. A. Rogers, Smart Mater. Struct. 7, 599 (1998).
[CrossRef]

1994 (1)

C. Liang, F. P. Sun, and C. A. Rogers, J. Intell. Mater. Syst. Struct. 5, 12 (1994).
[CrossRef]

Ayres, J. W.

J. W. Ayres, F. Lalande, Z. Chaudhry, and C. A. Rogers, Smart Mater. Struct. 7, 599 (1998).
[CrossRef]

Bastani, A.

N. Sepehry, M. Shamshirsaz, and A. Bastani, Struct. Health Monit. 10, 171 (2011).

Bhalla, S.

S. Bhalla and S. Moharana, J. Intell. Mater. Syst. Struct. 24, 33 (2012).
[CrossRef]

Castellini, P.

P. Castellini, M. Martarelli, and E. P. Toamasini, Mech. Sys. Sig. Pro. 20, 1265 (2006).
[CrossRef]

Chaudhry, Z.

J. W. Ayres, F. Lalande, Z. Chaudhry, and C. A. Rogers, Smart Mater. Struct. 7, 599 (1998).
[CrossRef]

Cuenca, J.

J. Cuenca, F. Gautier, and L. Simon, J. Sound Vib. 322, 1048 (2009).
[CrossRef]

Drain, L. E.

C. B. Scruby and L. E. Drain, Laser Ultrasonics: Techniques and Applications (Taylor & Francis, 2008), p. 76.

Farrar, C. R.

G. Park, H. Sohn, C. R. Farrar, and D. J. Inman, Shock Vib. Dig. 35, 451 (2003).

Gautier, F.

J. Cuenca, F. Gautier, and L. Simon, J. Sound Vib. 322, 1048 (2009).
[CrossRef]

Giurgiutiu, V.

V. Giurgiutiu, Structural Health Monitoring with Piezoelectric Wafer Active Sensors (Elsevier, 2008), p. 120.

Grisso, B. L.

B. L. Grisso and D. J. Inman, Smart Struct. Syst. 4, 305 (2008).

Hong, J. W.

W. Liu and J. W. Hong, Proc. SPIE 8545, 854501 (2012).
[CrossRef]

Inman, D. J.

B. L. Grisso and D. J. Inman, Smart Struct. Syst. 4, 305 (2008).

G. Park, H. Sohn, C. R. Farrar, and D. J. Inman, Shock Vib. Dig. 35, 451 (2003).

Lalande, F.

J. W. Ayres, F. Lalande, Z. Chaudhry, and C. A. Rogers, Smart Mater. Struct. 7, 599 (1998).
[CrossRef]

Lee, B. C.

W. J. Staszewski, B. C. Lee, L. Mallet, and F. Scarpa, Smart Mater. Struct. 13, 251 (2004).
[CrossRef]

Lee, H.

H. Lee, J. Yang, and H. Sohn, Struct. Health Monit. 11, 684 (2012).

Liang, C.

C. Liang, F. P. Sun, and C. A. Rogers, J. Intell. Mater. Syst. Struct. 5, 12 (1994).
[CrossRef]

Liu, W.

W. Liu and J. W. Hong, Proc. SPIE 8545, 854501 (2012).
[CrossRef]

Mallet, L.

W. J. Staszewski, B. C. Lee, L. Mallet, and F. Scarpa, Smart Mater. Struct. 13, 251 (2004).
[CrossRef]

Martarelli, M.

P. Castellini, M. Martarelli, and E. P. Toamasini, Mech. Sys. Sig. Pro. 20, 1265 (2006).
[CrossRef]

Moharana, S.

S. Bhalla and S. Moharana, J. Intell. Mater. Syst. Struct. 24, 33 (2012).
[CrossRef]

Park, G.

G. Park, H. Sohn, C. R. Farrar, and D. J. Inman, Shock Vib. Dig. 35, 451 (2003).

Rogers, C. A.

J. W. Ayres, F. Lalande, Z. Chaudhry, and C. A. Rogers, Smart Mater. Struct. 7, 599 (1998).
[CrossRef]

C. Liang, F. P. Sun, and C. A. Rogers, J. Intell. Mater. Syst. Struct. 5, 12 (1994).
[CrossRef]

Sabra, K. G.

M. Salman and K. G. Sabra, J. Acoust. Soc. Am. 133, 1245 (2013).
[CrossRef]

Salman, M.

M. Salman and K. G. Sabra, J. Acoust. Soc. Am. 133, 1245 (2013).
[CrossRef]

Scarpa, F.

W. J. Staszewski, B. C. Lee, L. Mallet, and F. Scarpa, Smart Mater. Struct. 13, 251 (2004).
[CrossRef]

Scruby, C. B.

C. B. Scruby and L. E. Drain, Laser Ultrasonics: Techniques and Applications (Taylor & Francis, 2008), p. 76.

Sepehry, N.

N. Sepehry, M. Shamshirsaz, and A. Bastani, Struct. Health Monit. 10, 171 (2011).

Shamshirsaz, M.

N. Sepehry, M. Shamshirsaz, and A. Bastani, Struct. Health Monit. 10, 171 (2011).

Simon, L.

J. Cuenca, F. Gautier, and L. Simon, J. Sound Vib. 322, 1048 (2009).
[CrossRef]

Sohn, H.

H. Lee, J. Yang, and H. Sohn, Struct. Health Monit. 11, 684 (2012).

G. Park, H. Sohn, C. R. Farrar, and D. J. Inman, Shock Vib. Dig. 35, 451 (2003).

Staszewski, W. J.

W. J. Staszewski, B. C. Lee, L. Mallet, and F. Scarpa, Smart Mater. Struct. 13, 251 (2004).
[CrossRef]

Sun, F. P.

C. Liang, F. P. Sun, and C. A. Rogers, J. Intell. Mater. Syst. Struct. 5, 12 (1994).
[CrossRef]

Taylor, R. L.

R. L. Taylor, FEAP—A Finite Element Analysis Program, Version 8.2 User Manual (University of California at Berkeley, 2008).

Toamasini, E. P.

P. Castellini, M. Martarelli, and E. P. Toamasini, Mech. Sys. Sig. Pro. 20, 1265 (2006).
[CrossRef]

Yang, J.

H. Lee, J. Yang, and H. Sohn, Struct. Health Monit. 11, 684 (2012).

J. Acoust. Soc. Am. (1)

M. Salman and K. G. Sabra, J. Acoust. Soc. Am. 133, 1245 (2013).
[CrossRef]

J. Intell. Mater. Syst. Struct. (2)

C. Liang, F. P. Sun, and C. A. Rogers, J. Intell. Mater. Syst. Struct. 5, 12 (1994).
[CrossRef]

S. Bhalla and S. Moharana, J. Intell. Mater. Syst. Struct. 24, 33 (2012).
[CrossRef]

J. Sound Vib. (1)

J. Cuenca, F. Gautier, and L. Simon, J. Sound Vib. 322, 1048 (2009).
[CrossRef]

Mech. Sys. Sig. Pro. (1)

P. Castellini, M. Martarelli, and E. P. Toamasini, Mech. Sys. Sig. Pro. 20, 1265 (2006).
[CrossRef]

Proc. SPIE (1)

W. Liu and J. W. Hong, Proc. SPIE 8545, 854501 (2012).
[CrossRef]

Shock Vib. Dig. (1)

G. Park, H. Sohn, C. R. Farrar, and D. J. Inman, Shock Vib. Dig. 35, 451 (2003).

Smart Mater. Struct. (2)

J. W. Ayres, F. Lalande, Z. Chaudhry, and C. A. Rogers, Smart Mater. Struct. 7, 599 (1998).
[CrossRef]

W. J. Staszewski, B. C. Lee, L. Mallet, and F. Scarpa, Smart Mater. Struct. 13, 251 (2004).
[CrossRef]

Smart Struct. Syst. (1)

B. L. Grisso and D. J. Inman, Smart Struct. Syst. 4, 305 (2008).

Struct. Health Monit. (2)

H. Lee, J. Yang, and H. Sohn, Struct. Health Monit. 11, 684 (2012).

N. Sepehry, M. Shamshirsaz, and A. Bastani, Struct. Health Monit. 10, 171 (2011).

Other (3)

C. B. Scruby and L. E. Drain, Laser Ultrasonics: Techniques and Applications (Taylor & Francis, 2008), p. 76.

V. Giurgiutiu, Structural Health Monitoring with Piezoelectric Wafer Active Sensors (Elsevier, 2008), p. 120.

R. L. Taylor, FEAP—A Finite Element Analysis Program, Version 8.2 User Manual (University of California at Berkeley, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of LMI measurement.

Fig. 2.
Fig. 2.

FE modeling of an aluminum plate and laser-induced thermal excitation (dimensions in millimeter). (a) Partitioning of the aluminum plate. (b) Spatial and temporal implementation of laser excitation.

Fig. 3.
Fig. 3.

Comparison of the numerical and experimental LMI responses.

Fig. 4.
Fig. 4.

Dimensions of the target plate and damage type 1: effect of notch number increases.

Fig. 5.
Fig. 5.

Dimensions of the target plate and damage type 2: effect of notch length increases.

Fig. 6.
Fig. 6.

LMI response changes due to damage type 1.

Fig. 7.
Fig. 7.

LMI response changes due to damage type 2.

Tables (2)

Tables Icon

Table 1. DI Values for Damage Type 1

Tables Icon

Table 2. DI Values for Damage Type 2

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

G ( x , y ; x 0 , y 0 ) = 4 L x L y m = 1 n = 1 sin ( k m x 0 ) sin ( k n y 0 ) sin ( k m x ) sin ( k n y ) D { ( k m 2 + k n 2 ) 2 k f 4 } ,
ρ u ¨ i x j τ i j = p i , T 0 s ˙ = q i x i ,
D I ( f i , f j ) = 1 max ω ˜ { 1 N 1 i , j ( f i ( ω + ω ˜ ) f ¯ i ) ( f j ( ω ) f ¯ j ) σ f i σ f j } ,

Metrics