Abstract

We proposed a subtraction method using vector beams for resolution enhancement in confocal microscopy. The imaging simulation revealed that the negative side lobe due to the excess subtraction resulted in the degradation of the object image. The subtraction imaging using vector beams demonstrated high spatial resolution with avoiding the negative side lobe. Further resolution enhancement beyond 100 nm was predicted by using a flat-top beam obtained by the combination of beams with radial and azimuthal polarizations and a higher-order transverse mode azimuthally polarized beam without significant negative side lobe.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).
  2. S. W. Hell and J. Wichmann, Opt. Lett. 19, 780 (1994).
    [CrossRef]
  3. M. J. Rust, M. Bates, and X. Zhuang, Nat. Methods 3, 793 (2006).
    [CrossRef]
  4. M. G. L. Gustafsson, J. Microsc. 198, 82 (2000).
    [CrossRef]
  5. S. J. Hewlett and T. Wilson, Mach. Vis. Appl. 4, 233 (1991).
    [CrossRef]
  6. E. Sánchez-Ortiga, C. J. R. Sheppard, G. Saavedra, M. Martínez-Corral, A. Doblas, and A. Calatayud, Opt. Lett. 37, 1280 (2012).
    [CrossRef]
  7. O. Haeberlé and B. Simon, Opt. Commun. 282, 3657 (2009).
    [CrossRef]
  8. C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, Sci. Rep. 3, 1441 (2013).
    [CrossRef]
  9. H. Dehez, M. Piché, and Y. D. Konick, Opt. Express 21, 15912 (2013).
    [CrossRef]
  10. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  11. P. D. Higdon, P. Török, and T. Wilson, J. Microsc. 193, 127 (1999).
    [CrossRef]
  12. M. R. Foreman and P. Török, J. Mod. Opt. 58, 339 (2011).
    [CrossRef]
  13. Y. Kozawa and S. Sato, J. Opt. Soc. Am. A 24, 1793 (2007).
    [CrossRef]
  14. Y. Kozawa and S. Sato, J. Opt. Soc. Am. A 29, 2439 (2012).
    [CrossRef]
  15. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
    [CrossRef]
  16. K. S. Youngworth and T. G. Brown, Opt. Express 7, 77 (2000).
    [CrossRef]
  17. Q. Zhan and J. R. Leger, Opt. Express 10, 324 (2002).
    [CrossRef]
  18. A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, Nat. Methods 10, 1122 (2013).
    [CrossRef]
  19. Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, Opt. Express 19, 15947 (2011).
    [CrossRef]

2013 (3)

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, Sci. Rep. 3, 1441 (2013).
[CrossRef]

H. Dehez, M. Piché, and Y. D. Konick, Opt. Express 21, 15912 (2013).
[CrossRef]

A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, Nat. Methods 10, 1122 (2013).
[CrossRef]

2012 (2)

2011 (2)

2009 (1)

O. Haeberlé and B. Simon, Opt. Commun. 282, 3657 (2009).
[CrossRef]

2007 (1)

2006 (1)

M. J. Rust, M. Bates, and X. Zhuang, Nat. Methods 3, 793 (2006).
[CrossRef]

2002 (1)

2000 (3)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

K. S. Youngworth and T. G. Brown, Opt. Express 7, 77 (2000).
[CrossRef]

M. G. L. Gustafsson, J. Microsc. 198, 82 (2000).
[CrossRef]

1999 (1)

P. D. Higdon, P. Török, and T. Wilson, J. Microsc. 193, 127 (1999).
[CrossRef]

1994 (1)

1991 (1)

S. J. Hewlett and T. Wilson, Mach. Vis. Appl. 4, 233 (1991).
[CrossRef]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, Nat. Methods 3, 793 (2006).
[CrossRef]

Brown, T. G.

Calatayud, A.

Chandris, P.

A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, Nat. Methods 10, 1122 (2013).
[CrossRef]

Chitnis, A.

A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, Nat. Methods 10, 1122 (2013).
[CrossRef]

Dehez, H.

Doblas, A.

Dorn, R.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Fischer, R. S.

A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, Nat. Methods 10, 1122 (2013).
[CrossRef]

Foreman, M. R.

M. R. Foreman and P. Török, J. Mod. Opt. 58, 339 (2011).
[CrossRef]

Ge, J.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, Sci. Rep. 3, 1441 (2013).
[CrossRef]

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Gu, Z.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, Sci. Rep. 3, 1441 (2013).
[CrossRef]

Gustafsson, M. G. L.

M. G. L. Gustafsson, J. Microsc. 198, 82 (2000).
[CrossRef]

Haeberlé, O.

O. Haeberlé and B. Simon, Opt. Commun. 282, 3657 (2009).
[CrossRef]

Hao, X.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, Sci. Rep. 3, 1441 (2013).
[CrossRef]

Hashimoto, N.

Head, J.

A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, Nat. Methods 10, 1122 (2013).
[CrossRef]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Hell, S. W.

Hewlett, S. J.

S. J. Hewlett and T. Wilson, Mach. Vis. Appl. 4, 233 (1991).
[CrossRef]

Hibi, T.

Higdon, P. D.

P. D. Higdon, P. Török, and T. Wilson, J. Microsc. 193, 127 (1999).
[CrossRef]

Horanai, H.

Konick, Y. D.

Kozawa, Y.

Kuang, C.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, Sci. Rep. 3, 1441 (2013).
[CrossRef]

Kurihara, M.

Leger, J. R.

Leuchs, G.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Li, H.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, Sci. Rep. 3, 1441 (2013).
[CrossRef]

Li, S.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, Sci. Rep. 3, 1441 (2013).
[CrossRef]

Liu, W.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, Sci. Rep. 3, 1441 (2013).
[CrossRef]

Liu, X.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, Sci. Rep. 3, 1441 (2013).
[CrossRef]

Martínez-Corral, M.

Nemoto, T.

Nogare, D. D.

A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, Nat. Methods 10, 1122 (2013).
[CrossRef]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Pawley, J.

J. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).

Piché, M.

Quabis, S.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, Nat. Methods 3, 793 (2006).
[CrossRef]

Saavedra, G.

Sánchez-Ortiga, E.

Sato, A.

Sato, S.

Sheppard, C. J. R.

Shroff, H.

A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, Nat. Methods 10, 1122 (2013).
[CrossRef]

Simon, B.

O. Haeberlé and B. Simon, Opt. Commun. 282, 3657 (2009).
[CrossRef]

Török, P.

M. R. Foreman and P. Török, J. Mod. Opt. 58, 339 (2011).
[CrossRef]

P. D. Higdon, P. Török, and T. Wilson, J. Microsc. 193, 127 (1999).
[CrossRef]

Wang, Y.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, Sci. Rep. 3, 1441 (2013).
[CrossRef]

Wawrzusin, P.

A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, Nat. Methods 10, 1122 (2013).
[CrossRef]

Wichmann, J.

Wilson, T.

P. D. Higdon, P. Török, and T. Wilson, J. Microsc. 193, 127 (1999).
[CrossRef]

S. J. Hewlett and T. Wilson, Mach. Vis. Appl. 4, 233 (1991).
[CrossRef]

Yokoyama, H.

York, A. G.

A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, Nat. Methods 10, 1122 (2013).
[CrossRef]

Youngworth, K. S.

Zhan, Q.

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, Nat. Methods 3, 793 (2006).
[CrossRef]

J. Microsc. (2)

M. G. L. Gustafsson, J. Microsc. 198, 82 (2000).
[CrossRef]

P. D. Higdon, P. Török, and T. Wilson, J. Microsc. 193, 127 (1999).
[CrossRef]

J. Mod. Opt. (1)

M. R. Foreman and P. Török, J. Mod. Opt. 58, 339 (2011).
[CrossRef]

J. Opt. Soc. Am. A (2)

Mach. Vis. Appl. (1)

S. J. Hewlett and T. Wilson, Mach. Vis. Appl. 4, 233 (1991).
[CrossRef]

Nat. Methods (2)

A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, Nat. Methods 10, 1122 (2013).
[CrossRef]

M. J. Rust, M. Bates, and X. Zhuang, Nat. Methods 3, 793 (2006).
[CrossRef]

Opt. Commun. (2)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

O. Haeberlé and B. Simon, Opt. Commun. 282, 3657 (2009).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Sci. Rep. (1)

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, Sci. Rep. 3, 1441 (2013).
[CrossRef]

Other (2)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

J. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Subtracting imaging using Gaussian and AP beams. (a) Intensity profiles of subtracted PSFs with the Gaussian and AP beams for γ = 0 , γ = 0.25 , and γ = 0.5 . (b) Intensity profiles of the images obtained by the imaging simulation for the object shown in (c). (d)–(f) Simulations of the subtraction imaging for γ = 0 , γ = 0.25 , and γ = 0.5 , respectively. (g) Simulation image when the negative intensities were set to zero.

Fig. 2.
Fig. 2.

Subtraction imaging using vector beams. (a) Subtracted PSFs for circularly polarized Gaussian and RP beams. The PSF for a Gaussian beam without subtraction is also depicted. (b) Intensity profiles of images obtained by the imaging simulations shown in (c)–(e). (c) Simulation image for a circularly polarized Gaussian beam. (d) and (e) Simulations for the subtraction imaging for the Gaussian and RP beams, respectively.

Fig. 3.
Fig. 3.

Intensity distributions of vector beams. (a) Intensity distributions of different electric components for the focused RP beam at the focal plane. (b) Intensity profiles of the radial and azimuthal components of the RP and AP beams, respectively. The curves were normalized by their peak values.

Fig. 4.
Fig. 4.

PSFs for the combined beams of azimuthally and radially polarized beams with a constant α of 0, 0.25, 0.56 (flat-top), 0.75 and 1.0.

Fig. 5.
Fig. 5.

Comparison of AP ( LG 01 ) and HAP ( LG 51 ) beams. (a) and (b) Intensity distributions of the focused azimuthally polarized beams the focal plane for LG 01 and LG 51 modes. (c) PSFs in confocal microscopy for the AP beams with LG 01 and LG 51 modes.

Fig. 6.
Fig. 6.

Subtraction imaging using flat-top and HAP beams. (a) PSFs of the flat-top, HAP and subtraction imaging. (b) PSFs of the Gaussian, AP and their subtraction imaging. (c) and (d) Results of imaging simulation for the flat-top and the Gaussian beams, respectively. (e) Intensity profiles along the dashed lines in (c) and (d).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

PSF sub = PSF Gauss γ PSF AP ,
I total = α I AP + ( 1 α ) I RP ,

Metrics