Abstract

On-chip, high-power, erbium-doped distributed feedback lasers are demonstrated in a CMOS-compatible fabrication flow. The laser cavities consist of silicon nitride waveguide and grating features, defined by wafer-scale immersion lithography and an erbium-doped aluminum oxide layer deposited as the final step in the fabrication process. The large mode size lasers demonstrate single-mode continuous wave operation with a maximum output power of 75 mW without any thermal damage. The laser output power does not saturate at high pump intensities and is, therefore, capable of delivering even higher on-chip signals if a stronger pump is utilized. The amplitude noise of the laser is investigated and the laser is shown to be stable and free from self-pulsing when the pump power is sufficiently above threshold.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Keyvaninia, S. Verstuyft, L. Van Landschoot, F. Lelarge, G.-H. Duan, S. Messaoudene, J. M. Fedeli, T. De Vries, B. Smalbrugge, E. J. Geluk, J. Bolk, M. Smit, G. Morthier, D. Van Thourhout, and G. Roelkens, Opt. Lett. 38, 5434 (2013).
    [CrossRef]
  2. S. Srinivasan, A. W. Fang, D. Liang, J. Peters, B. Kaye, and J. E. Bowers, Opt. Express 19, 9255 (2011).
    [CrossRef]
  3. T. Creazzo, E. Marchena, and S. Krasulick, Opt. Express 21, 28048 (2013).
    [CrossRef]
  4. J. D. B. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, Opt. Lett. 35, 73 (2010).
    [CrossRef]
  5. E. H. Bernhardi, H. A. G. M. Van Wolferen, L. Agazzi, M. R. H. Khan, C. G. H. Roeloffzen, K. Worhoff, M. Pollnau, and R. M. de Ridder, Opt. Lett. 35, 2394 (2010).
    [CrossRef]
  6. E. H. Bernhardi, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, Opt. Lett. 36, 603 (2011).
    [CrossRef]
  7. G. Agrawal, Proc. SPIE 1376, 224 (1991).
    [CrossRef]
  8. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, Nature 433, 725 (2005).
    [CrossRef]
  9. R. Camacho-Aguilera and Y. Cai, Opt. Express 20, 11316 (2012).
    [CrossRef]
  10. Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, E. Shah Hosseini, and M. R. Watts, Opt. Lett. 38, 1760 (2013).
    [CrossRef]
  11. J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, J. Opt. Soc. Am. B 27, 187 (2010).
    [CrossRef]
  12. O. Mahran, M. Helmy, and M. El Hai, J. Appl. Sci. Res. 5, 1692 (2009).
  13. E. H. H. Bernhardi, Q. Lu, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, Photon. Nanostruct. Fundam. Appl. 9, 225 (2011).
    [CrossRef]
  14. J. T. Robinson, K. Preston, O. Painter, and M. Lipson, Opt. Express 16, 16659 (2008).
    [CrossRef]
  15. Purnawirman, E. Shah Hosseini, J. D. B. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, in Advanced Photonics 2013 (2013), paper IM2A.4.
  16. E. Herth, B. Legrand, L. Buchaillot, N. Rolland, and T. Lasri, Microelectron. Reliab. 50, 1103 (2010).
  17. M.-C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, Opt. Express 19, 13551 (2011).
    [CrossRef]
  18. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, Opt. Express 19, 3163 (2011).
    [CrossRef]
  19. M. Belt, T. Huffman, M. L. Davenport, W. Li, J. S. Barton, and D. J. Blumenthal, Opt. Lett. 38, 4825 (2013).
    [CrossRef]
  20. N. Sherwood-Droz and M. Lipson, Opt. Express 19, 17758 (2011).
    [CrossRef]
  21. K. Worhoff, J. Bradley, and F. Ay, IEEE J. Quantum Electron. 45, 454 (2009).
    [CrossRef]
  22. L. Agazzi, K. Wörhoff, and M. Pollnau, J. Phys. Chem. C 117, 6759 (2013).
    [CrossRef]
  23. S. Colin, E. Contesse, P. L. Boudec, G. Stephan, and F. Sanchez, Opt. Lett. 21, 1987 (1996).
    [CrossRef]
  24. Y. Barmenkov and A. Kir’yanov, Opt. Express 12, 3171 (2004).
    [CrossRef]
  25. L. Agazzi, E. H. Bernhardi, K. Wörhoff, and M. Pollnau, Appl. Phys. Lett. 100, 011109 (2012).
    [CrossRef]
  26. J. Salcedo, J. Sousa, and V. Kuzmin, Appl. Phys. B 62, 83 (1996).
    [CrossRef]

2013 (5)

2012 (2)

R. Camacho-Aguilera and Y. Cai, Opt. Express 20, 11316 (2012).
[CrossRef]

L. Agazzi, E. H. Bernhardi, K. Wörhoff, and M. Pollnau, Appl. Phys. Lett. 100, 011109 (2012).
[CrossRef]

2011 (6)

2010 (4)

2009 (2)

K. Worhoff, J. Bradley, and F. Ay, IEEE J. Quantum Electron. 45, 454 (2009).
[CrossRef]

O. Mahran, M. Helmy, and M. El Hai, J. Appl. Sci. Res. 5, 1692 (2009).

2008 (1)

2005 (1)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, Nature 433, 725 (2005).
[CrossRef]

2004 (1)

1996 (2)

1991 (1)

G. Agrawal, Proc. SPIE 1376, 224 (1991).
[CrossRef]

Adam, T. N.

Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, E. Shah Hosseini, and M. R. Watts, Opt. Lett. 38, 1760 (2013).
[CrossRef]

Purnawirman, E. Shah Hosseini, J. D. B. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, in Advanced Photonics 2013 (2013), paper IM2A.4.

Agazzi, L.

Agrawal, G.

G. Agrawal, Proc. SPIE 1376, 224 (1991).
[CrossRef]

Ay, F.

Barmenkov, Y.

Barton, J. S.

Bauters, J. F.

Belt, M.

Bernhardi, E. H.

Bernhardi, E. H. H.

E. H. H. Bernhardi, Q. Lu, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, Photon. Nanostruct. Fundam. Appl. 9, 225 (2011).
[CrossRef]

Blumenthal, D. J.

Bolk, J.

Boudec, P. L.

Bowers, J. E.

Bradley, J.

K. Worhoff, J. Bradley, and F. Ay, IEEE J. Quantum Electron. 45, 454 (2009).
[CrossRef]

Bradley, J. D. B.

Buchaillot, L.

E. Herth, B. Legrand, L. Buchaillot, N. Rolland, and T. Lasri, Microelectron. Reliab. 50, 1103 (2010).

Cai, Y.

Camacho-Aguilera, R.

Cohen, O.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, Nature 433, 725 (2005).
[CrossRef]

Colin, S.

Contesse, E.

Coolbaugh, D.

Coolbaugh, D. D.

Purnawirman, E. Shah Hosseini, J. D. B. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, in Advanced Photonics 2013 (2013), paper IM2A.4.

Creazzo, T.

Dai, D.

Davenport, M. L.

de Ridder, R. M.

De Vries, T.

Duan, G.-H.

El Hai, M.

O. Mahran, M. Helmy, and M. El Hai, J. Appl. Sci. Res. 5, 1692 (2009).

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, Nature 433, 725 (2005).
[CrossRef]

Fang, A. W.

Fedeli, J. M.

Geluk, E. J.

Geskus, D.

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, Nature 433, 725 (2005).
[CrossRef]

Heck, M. J. R.

Heideman, R. G.

Helmy, M.

O. Mahran, M. Helmy, and M. El Hai, J. Appl. Sci. Res. 5, 1692 (2009).

Herth, E.

E. Herth, B. Legrand, L. Buchaillot, N. Rolland, and T. Lasri, Microelectron. Reliab. 50, 1103 (2010).

Huffman, T.

John, D.

Jones, R.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, Nature 433, 725 (2005).
[CrossRef]

Kaye, B.

Keyvaninia, S.

Khan, M. R. H.

Kir’yanov, A.

Krasulick, S.

Kuzmin, V.

J. Salcedo, J. Sousa, and V. Kuzmin, Appl. Phys. B 62, 83 (1996).
[CrossRef]

Lasri, T.

E. Herth, B. Legrand, L. Buchaillot, N. Rolland, and T. Lasri, Microelectron. Reliab. 50, 1103 (2010).

Leake, G.

Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, E. Shah Hosseini, and M. R. Watts, Opt. Lett. 38, 1760 (2013).
[CrossRef]

Purnawirman, E. Shah Hosseini, J. D. B. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, in Advanced Photonics 2013 (2013), paper IM2A.4.

Legrand, B.

E. Herth, B. Legrand, L. Buchaillot, N. Rolland, and T. Lasri, Microelectron. Reliab. 50, 1103 (2010).

Leinse, A.

Lelarge, F.

Li, W.

Liang, D.

Lipson, M.

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, Nature 433, 725 (2005).
[CrossRef]

Lu, Q.

E. H. H. Bernhardi, Q. Lu, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, Photon. Nanostruct. Fundam. Appl. 9, 225 (2011).
[CrossRef]

Mahran, O.

O. Mahran, M. Helmy, and M. El Hai, J. Appl. Sci. Res. 5, 1692 (2009).

Marchena, E.

Messaoudene, S.

Morthier, G.

Painter, O.

Paniccia, M.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, Nature 433, 725 (2005).
[CrossRef]

Peters, J.

Pollnau, M.

Preston, K.

Purnawirman,

Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, E. Shah Hosseini, and M. R. Watts, Opt. Lett. 38, 1760 (2013).
[CrossRef]

Purnawirman, E. Shah Hosseini, J. D. B. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, in Advanced Photonics 2013 (2013), paper IM2A.4.

Robinson, J. T.

Roelkens, G.

Roeloffzen, C. G. H.

Rolland, N.

E. Herth, B. Legrand, L. Buchaillot, N. Rolland, and T. Lasri, Microelectron. Reliab. 50, 1103 (2010).

Rong, H.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, Nature 433, 725 (2005).
[CrossRef]

Salcedo, J.

J. Salcedo, J. Sousa, and V. Kuzmin, Appl. Phys. B 62, 83 (1996).
[CrossRef]

Sanchez, F.

Shah Hosseini, E.

Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, E. Shah Hosseini, and M. R. Watts, Opt. Lett. 38, 1760 (2013).
[CrossRef]

Purnawirman, E. Shah Hosseini, J. D. B. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, in Advanced Photonics 2013 (2013), paper IM2A.4.

Sherwood-Droz, N.

Smalbrugge, B.

Smit, M.

Sousa, J.

J. Salcedo, J. Sousa, and V. Kuzmin, Appl. Phys. B 62, 83 (1996).
[CrossRef]

Spencer, D. T.

Srinivasan, S.

Stephan, G.

Stoffer, R.

Sun, J.

Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, E. Shah Hosseini, and M. R. Watts, Opt. Lett. 38, 1760 (2013).
[CrossRef]

Purnawirman, E. Shah Hosseini, J. D. B. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, in Advanced Photonics 2013 (2013), paper IM2A.4.

Tien, M.

Tien, M.-C.

Van Landschoot, L.

Van Thourhout, D.

van Wolferen, H. A. G. M.

Verstuyft, S.

Watts, M. R.

Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, E. Shah Hosseini, and M. R. Watts, Opt. Lett. 38, 1760 (2013).
[CrossRef]

Purnawirman, E. Shah Hosseini, J. D. B. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, in Advanced Photonics 2013 (2013), paper IM2A.4.

Worhoff, K.

Wörhoff, K.

L. Agazzi, K. Wörhoff, and M. Pollnau, J. Phys. Chem. C 117, 6759 (2013).
[CrossRef]

L. Agazzi, E. H. Bernhardi, K. Wörhoff, and M. Pollnau, Appl. Phys. Lett. 100, 011109 (2012).
[CrossRef]

E. H. Bernhardi, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, Opt. Lett. 36, 603 (2011).
[CrossRef]

E. H. H. Bernhardi, Q. Lu, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, Photon. Nanostruct. Fundam. Appl. 9, 225 (2011).
[CrossRef]

J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, J. Opt. Soc. Am. B 27, 187 (2010).
[CrossRef]

J. D. B. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, Opt. Lett. 35, 73 (2010).
[CrossRef]

Appl. Phys. B (1)

J. Salcedo, J. Sousa, and V. Kuzmin, Appl. Phys. B 62, 83 (1996).
[CrossRef]

Appl. Phys. Lett. (1)

L. Agazzi, E. H. Bernhardi, K. Wörhoff, and M. Pollnau, Appl. Phys. Lett. 100, 011109 (2012).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Worhoff, J. Bradley, and F. Ay, IEEE J. Quantum Electron. 45, 454 (2009).
[CrossRef]

J. Appl. Sci. Res. (1)

O. Mahran, M. Helmy, and M. El Hai, J. Appl. Sci. Res. 5, 1692 (2009).

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

L. Agazzi, K. Wörhoff, and M. Pollnau, J. Phys. Chem. C 117, 6759 (2013).
[CrossRef]

Microelectron. Reliab. (1)

E. Herth, B. Legrand, L. Buchaillot, N. Rolland, and T. Lasri, Microelectron. Reliab. 50, 1103 (2010).

Nature (1)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, Nature 433, 725 (2005).
[CrossRef]

Opt. Express (8)

Opt. Lett. (7)

Photon. Nanostruct. Fundam. Appl. (1)

E. H. H. Bernhardi, Q. Lu, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, Photon. Nanostruct. Fundam. Appl. 9, 225 (2011).
[CrossRef]

Proc. SPIE (1)

G. Agrawal, Proc. SPIE 1376, 224 (1991).
[CrossRef]

Other (1)

Purnawirman, E. Shah Hosseini, J. D. B. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, in Advanced Photonics 2013 (2013), paper IM2A.4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Waveguides used in this work. (a) Layers used for constructing the waveguide structure within wafer-scale fabrication flow. High-definition masks are used to create waveguides and gratings in the SiN layer, and an erbium-doped glass is deposited as a blanket film. (b) Intensity profile of an inverted ridge waveguide mode with a 4 μm SiN core. The 1563 nm mode is mainly confined in the erbium-doped glass.

Fig. 2.
Fig. 2.

On-chip DFB laser performance. (a) Single-mode laser emission from the DFB with more than 60 dB suppression of the amplified spontaneous emission (ASE), measured with an OSA with 0.02 nm resolution. The peak around 1588 is due to the Raman-shifted residual pump. (b) Power as a function of launched pump power for two lasers with equal corrugation ( κ = 300 ), but different grating length ( L = 23 and 15 mm), lasing at 1563 nm. The cavity with the longer grating shows higher slope efficiency and a lower threshold.

Fig. 3.
Fig. 3.

Relaxation oscillation frequency as a function of pump rate for a DFB laser with an intrinsic lifetime of 8.3 ns ( κ = 300 , L = 23 mm ). The y -axis intercept [ ω 2 = 1.5 × 10 14 ( rad / s ) 2 ] determines the effective lifetime of the Er ions.

Fig. 4.
Fig. 4.

Effect of pump rate on intensity fluctuations of the laser output power. (a) Self-pulsing behavior is suppressed when the launched pump power is increased from 0.3 W (red) to 1.1 W (black). (b) Laser intensity fluctuation monitored for 0.5 ms. Low pumped case (red) demonstrates sustained self-pulsing behavior while moderately pumped laser (blue) is susceptible to instabilities. The highest pumping setting (black) is stable for a longer period.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ω ro 2 = 1 τ eff ( 1 τ c + c n σ a N ) ( P p P th 1 ) ,
1 τ eff = q τ q + 1 q τ ,

Metrics