Abstract

We demonstrate a dual-wavelength band optical frequency domain imaging (OFDI) system that provides high-resolution spectroscopic imaging with metallic nanoparticles as exogenous contrast agents. The local increase of the OFDI signal by elastic scattering from two different custom-fabricated nonspherical nanoparticles resonant at each wavelength band of the system was successfully detected, and we were able to distinguish and visualize the location of each of the nanoparticles in a scattering sample and in biological tissue.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, Opt. Lett. 25, 111 (2000).
    [CrossRef]
  2. F. E. Robles, C. Wilson, G. Grant, and A. Wax, Nat. Photonics 5, 744 (2011).
    [CrossRef]
  3. A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, and S. A. Boppart, J. Mater. Chem. 19, 6407 (2009).
    [CrossRef]
  4. Y. L. Li, K. Seekell, H. Yuan, F. E. Robles, and A. Wax, J. Biomed. Opt. 3, 1914 (2012).
    [CrossRef]
  5. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, Opt. Express 11, 2953 (2003).
    [CrossRef]
  6. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, Opt. Express 11, 2183 (2003).
    [CrossRef]
  7. H. S. Cho, S. J. Jang, K. Kim, A. V. Dan-Chin-Yu, M. Shishkov, B. E. Bouma, and W. Y. Oh, Biomed. Opt. Express 5, 223 (2014).
    [CrossRef]
  8. S. Link, M. B. Mohammed, and M. A. El-Sayed, J. Phys. Chem. 103, 3073 (1999).
    [CrossRef]
  9. S. A. Maier, in Plasmonics: Fundamentals and Applications (Springer, 2007), p. 65.

2014

2012

Y. L. Li, K. Seekell, H. Yuan, F. E. Robles, and A. Wax, J. Biomed. Opt. 3, 1914 (2012).
[CrossRef]

2011

F. E. Robles, C. Wilson, G. Grant, and A. Wax, Nat. Photonics 5, 744 (2011).
[CrossRef]

2009

A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, and S. A. Boppart, J. Mater. Chem. 19, 6407 (2009).
[CrossRef]

2003

2000

1999

S. Link, M. B. Mohammed, and M. A. El-Sayed, J. Phys. Chem. 103, 3073 (1999).
[CrossRef]

Boppart, S. A.

A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, and S. A. Boppart, J. Mater. Chem. 19, 6407 (2009).
[CrossRef]

Bouma, B. E.

Cho, H. S.

Choma, M. A.

Dan-Chin-Yu, A. V.

de Boer, J. F.

Drexler, W.

El-Sayed, M. A.

S. Link, M. B. Mohammed, and M. A. El-Sayed, J. Phys. Chem. 103, 3073 (1999).
[CrossRef]

Fujimoto, J. G.

Grant, G.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, Nat. Photonics 5, 744 (2011).
[CrossRef]

Hansen, M. N.

A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, and S. A. Boppart, J. Mater. Chem. 19, 6407 (2009).
[CrossRef]

Iftimia, N.

Ippen, E. P.

Izatt, J. A.

Jang, S. J.

Kärtner, F. X.

Kim, K.

Li, X. D.

Li, Y. L.

Y. L. Li, K. Seekell, H. Yuan, F. E. Robles, and A. Wax, J. Biomed. Opt. 3, 1914 (2012).
[CrossRef]

Link, S.

S. Link, M. B. Mohammed, and M. A. El-Sayed, J. Phys. Chem. 103, 3073 (1999).
[CrossRef]

Maier, S. A.

S. A. Maier, in Plasmonics: Fundamentals and Applications (Springer, 2007), p. 65.

Mohammed, M. B.

S. Link, M. B. Mohammed, and M. A. El-Sayed, J. Phys. Chem. 103, 3073 (1999).
[CrossRef]

Morgner, U.

Oh, W. Y.

Oldenburg, A. L.

A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, and S. A. Boppart, J. Mater. Chem. 19, 6407 (2009).
[CrossRef]

Pitris, C.

Ralston, T. S.

A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, and S. A. Boppart, J. Mater. Chem. 19, 6407 (2009).
[CrossRef]

Robles, F. E.

Y. L. Li, K. Seekell, H. Yuan, F. E. Robles, and A. Wax, J. Biomed. Opt. 3, 1914 (2012).
[CrossRef]

F. E. Robles, C. Wilson, G. Grant, and A. Wax, Nat. Photonics 5, 744 (2011).
[CrossRef]

Sarunic, M. V.

Seekell, K.

Y. L. Li, K. Seekell, H. Yuan, F. E. Robles, and A. Wax, J. Biomed. Opt. 3, 1914 (2012).
[CrossRef]

Shishkov, M.

Tearney, G. J.

Wax, A.

Y. L. Li, K. Seekell, H. Yuan, F. E. Robles, and A. Wax, J. Biomed. Opt. 3, 1914 (2012).
[CrossRef]

F. E. Robles, C. Wilson, G. Grant, and A. Wax, Nat. Photonics 5, 744 (2011).
[CrossRef]

Wei, A.

A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, and S. A. Boppart, J. Mater. Chem. 19, 6407 (2009).
[CrossRef]

Wilson, C.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, Nat. Photonics 5, 744 (2011).
[CrossRef]

Yang, C.

Yuan, H.

Y. L. Li, K. Seekell, H. Yuan, F. E. Robles, and A. Wax, J. Biomed. Opt. 3, 1914 (2012).
[CrossRef]

Yun, S. H.

Biomed. Opt. Express

J. Biomed. Opt.

Y. L. Li, K. Seekell, H. Yuan, F. E. Robles, and A. Wax, J. Biomed. Opt. 3, 1914 (2012).
[CrossRef]

J. Mater. Chem.

A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, and S. A. Boppart, J. Mater. Chem. 19, 6407 (2009).
[CrossRef]

J. Phys. Chem.

S. Link, M. B. Mohammed, and M. A. El-Sayed, J. Phys. Chem. 103, 3073 (1999).
[CrossRef]

Nat. Photonics

F. E. Robles, C. Wilson, G. Grant, and A. Wax, Nat. Photonics 5, 744 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Other

S. A. Maier, in Plasmonics: Fundamentals and Applications (Springer, 2007), p. 65.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the dual-wavelength band OFDI system and (b) an illustration of laser modulation at each wavelength. Two short cavity wavelength swept laser sources with wavelength bands at 1040 nm (blue) and 1300 nm (red) were combined with a dichroic mirror. To minimize the wavelength dependence, a free-space optic system interferometer was built. SOA, semiconductor optical amplifier; TFPF, tunable Fabry–Perot filter; DM, dichroic mirror; BS, beam splitter; RM, reference mirror; FBG, Fiber Bragg grating; PBS, polarization beam splitter; GM, galvanometric mirror scanner; OL, objective lens.

Fig. 2.
Fig. 2.

Normalized extinction spectra of the gold nanorods (GNR) and the silver nanoplates (SNP) measured by a UV–Vis spectrometer. The gold nanorods and silver nanoplates were designed to have plasmon resonance at 1.0 and 1.3 μm, respectively.

Fig. 3.
Fig. 3.

Images of the nanoparticle solutions injected inside (a) two adjacent tubes and (b) gaps between scattering phantom and slightly inclined coverslips. The intensity images were normalized and median-filtered. For each set of images, (upper left) intensity image acquired with the 1.3 μm source, (lower left) intensity image acquired with the 1.0 μm source, (upper right) spectroscopic contrast image obtained by subtracting two intensity images, and (lower right) thresholded contrast superposed with the intensity image. The 1.3 μm resonant SNP is in the left tube (wedge) and the 1.0 μm resonant GNR is in the right tube (wedge). Scale bar: 100 μm.

Fig. 4.
Fig. 4.

(a) Photograph of a mouse ear after intradermal injection of the nanoparticle solutions. Thresholded contrast superposed with the intensity image (b) en face, (c) at the xz cross section, and (d), (e) at the yz cross section. The positions of xz and yz cross sections are indicated on the en face image. Red color represents 1.3 μm resonant silver nanoplates and blue color represents 1.0 μm resonant gold nanorods. Scale bar: 100 μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Csca=k46π|α|2=8π3k4a6|εεmε+2εm|2Cabs=k·Im[α]=4πka3·Im[εεmε+2εm],

Metrics