Abstract

In this study, the degree of conversion (DC) of an acrylic-based resin (IP-L 780) in two-photon polymerization (TPP) is systematically investigated via Raman microspectroscopy. A quantitative relationship between TPP laser parameters and the DC of the resin is established. Nonlinear increase in DC with increased laser average power is observed. The resin DC is more sensitive to the laser average power than the laser writing speed. Nanoindentation was employed to correlate the results obtained from Raman microspectroscopy with the mechanical properties of microstructures fabricated by TPP. At constant writing speeds, microstructures fabricated with high laser average powers possess high hardness and high reduced Young’s modulus (RYM), indicating high DCs. The results are in line with high DCs measured under the same TPP parameters in Raman microspectroscopy. Raman microspectroscopy is proved to be an effective, rapid, and nondestructive method characterizing microstructures fabrication by TPP.

© 2014 Optical Society of America

Full Article  |  PDF Article
Related Articles
Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser

Irène Wang, Michel Bouriau, Patrice L. Baldeck, Cécile Martineau, and Chantal Andraud
Opt. Lett. 27(15) 1348-1350 (2002)

Multiphoton fabrication of freeform polymer microstructures with gold nanorods

Wen-Shuo Kuo, Chi-Hsiang Lien, Keng-Chi Cho, Chia-Yuan Chang, Chun-Yu Lin, Lynn L. H. Huang, Paul J. Campagnola, Chen Yuan Dong, and Shean-Jen Chen
Opt. Express 18(26) 27550-27559 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription