Abstract

We report a synchronously pumped femtosecond diamond Raman laser operating at 895 nm with a 33% slope efficiency. Pumped using a mode-locked Ti:sapphire laser at 800 nm with a duration of 170 fs, the bandwidth of the Stokes output is broadened and chirped to enable subsequent pulse compression to 95 fs using a prism pair. Modeling results indicate that self-phase modulation drives the broadening of the Stokes spectrum in this highly transient laser. Our results demonstrate the potential for Raman conversion to extend the wavelength coverage and pulse shorten Ti:sapphire lasers.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Anscombe and A. Stingl, Nat. Photonics 4, 158 (2010).
    [CrossRef]
  2. J. M. Girkin and G. McConnell, Microsc. Res. Tech. 67, 8 (2005).
    [CrossRef]
  3. H. M. Pask, Prog. Quantum Electron. 27, 3 (2003).
    [CrossRef]
  4. O. V. Buganov, A. S. Grabtchikov, Y. I. Malakhov, Y. M. Popov, V. A. Orlovich, and S. A. Tikhomirov, Laser Phys. Lett. 9, 786 (2012).
  5. M. Zhi, K. Wang, X. Hua, H. Schuessler, J. Strohaber, and A. V. Sokolov, Opt. Express 21, 27750 (2013).
    [CrossRef]
  6. P. Straka, J. W. Nicholson, and W. Rudolph, Opt. Commun. 178, 175 (2000).
    [CrossRef]
  7. M. J. Colles, Appl. Phys. Lett. 19, 23 (1971).
    [CrossRef]
  8. G. G. Grigoryan and S. B. Sogomonyan, Sov. J. Quantum Electron. 19, 1402 (1989).
    [CrossRef]
  9. E. Granados, H. M. Pask, and D. J. Spence, Opt. Express 17, 569 (2009).
    [CrossRef]
  10. D. J. Spence, E. Granados, and R. P. Mildren, Opt. Lett. 35, 556 (2010).
    [CrossRef]
  11. E. Granados, D. J. Spence, and R. P. Mildren, Opt. Express 19, 10857 (2011).
    [CrossRef]
  12. A. M. Warrier, J. Lin, H. M. Pask, R. P. Mildren, D. W. Coutts, and D. J. Spence, Opt. Express 22, 3325 (2014).
    [CrossRef]
  13. R. P. Mildren, in Optical Engineering of Diamond, R. P. Mildren and J. R. Rabeau, eds. (Wiley-VCH, 2013), Chap. 1, pp. 1–34.
  14. E. Granados and D. J. Spence, Opt. Express 18, 20422 (2010).
    [CrossRef]
  15. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  16. J. K. Ranka and A. L. Gaeta, Opt. Lett. 23, 534 (1998).
    [CrossRef]
  17. D. Schadt and B. Jaskorzynska, J. Opt. Soc. Am. B 4, 856 (1987).
    [CrossRef]
  18. C. J. S. de Matos, S. V. Popov, and J. R. Taylor, Opt. Lett. 28, 1891 (2003).
    [CrossRef]
  19. E. Granados, H. M. Pask, E. Esposito, G. McConnell, and D. J. Spence, Opt. Express 18, 5289 (2010).
    [CrossRef]
  20. D. T. Reid, J. Sun, T. P. Lamour, and T. I. Ferrerio, Laser Phys. Lett. 8, 8 (2011).
    [CrossRef]

2014 (1)

2013 (1)

2012 (1)

O. V. Buganov, A. S. Grabtchikov, Y. I. Malakhov, Y. M. Popov, V. A. Orlovich, and S. A. Tikhomirov, Laser Phys. Lett. 9, 786 (2012).

2011 (2)

D. T. Reid, J. Sun, T. P. Lamour, and T. I. Ferrerio, Laser Phys. Lett. 8, 8 (2011).
[CrossRef]

E. Granados, D. J. Spence, and R. P. Mildren, Opt. Express 19, 10857 (2011).
[CrossRef]

2010 (4)

2009 (1)

2005 (1)

J. M. Girkin and G. McConnell, Microsc. Res. Tech. 67, 8 (2005).
[CrossRef]

2003 (2)

2000 (1)

P. Straka, J. W. Nicholson, and W. Rudolph, Opt. Commun. 178, 175 (2000).
[CrossRef]

1998 (1)

1989 (1)

G. G. Grigoryan and S. B. Sogomonyan, Sov. J. Quantum Electron. 19, 1402 (1989).
[CrossRef]

1987 (1)

1971 (1)

M. J. Colles, Appl. Phys. Lett. 19, 23 (1971).
[CrossRef]

Anscombe, N.

N. Anscombe and A. Stingl, Nat. Photonics 4, 158 (2010).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Buganov, O. V.

O. V. Buganov, A. S. Grabtchikov, Y. I. Malakhov, Y. M. Popov, V. A. Orlovich, and S. A. Tikhomirov, Laser Phys. Lett. 9, 786 (2012).

Colles, M. J.

M. J. Colles, Appl. Phys. Lett. 19, 23 (1971).
[CrossRef]

Coutts, D. W.

de Matos, C. J. S.

Esposito, E.

Ferrerio, T. I.

D. T. Reid, J. Sun, T. P. Lamour, and T. I. Ferrerio, Laser Phys. Lett. 8, 8 (2011).
[CrossRef]

Gaeta, A. L.

Girkin, J. M.

J. M. Girkin and G. McConnell, Microsc. Res. Tech. 67, 8 (2005).
[CrossRef]

Grabtchikov, A. S.

O. V. Buganov, A. S. Grabtchikov, Y. I. Malakhov, Y. M. Popov, V. A. Orlovich, and S. A. Tikhomirov, Laser Phys. Lett. 9, 786 (2012).

Granados, E.

Grigoryan, G. G.

G. G. Grigoryan and S. B. Sogomonyan, Sov. J. Quantum Electron. 19, 1402 (1989).
[CrossRef]

Hua, X.

Jaskorzynska, B.

Lamour, T. P.

D. T. Reid, J. Sun, T. P. Lamour, and T. I. Ferrerio, Laser Phys. Lett. 8, 8 (2011).
[CrossRef]

Lin, J.

Malakhov, Y. I.

O. V. Buganov, A. S. Grabtchikov, Y. I. Malakhov, Y. M. Popov, V. A. Orlovich, and S. A. Tikhomirov, Laser Phys. Lett. 9, 786 (2012).

McConnell, G.

Mildren, R. P.

Nicholson, J. W.

P. Straka, J. W. Nicholson, and W. Rudolph, Opt. Commun. 178, 175 (2000).
[CrossRef]

Orlovich, V. A.

O. V. Buganov, A. S. Grabtchikov, Y. I. Malakhov, Y. M. Popov, V. A. Orlovich, and S. A. Tikhomirov, Laser Phys. Lett. 9, 786 (2012).

Pask, H. M.

Popov, S. V.

Popov, Y. M.

O. V. Buganov, A. S. Grabtchikov, Y. I. Malakhov, Y. M. Popov, V. A. Orlovich, and S. A. Tikhomirov, Laser Phys. Lett. 9, 786 (2012).

Ranka, J. K.

Reid, D. T.

D. T. Reid, J. Sun, T. P. Lamour, and T. I. Ferrerio, Laser Phys. Lett. 8, 8 (2011).
[CrossRef]

Rudolph, W.

P. Straka, J. W. Nicholson, and W. Rudolph, Opt. Commun. 178, 175 (2000).
[CrossRef]

Schadt, D.

Schuessler, H.

Sogomonyan, S. B.

G. G. Grigoryan and S. B. Sogomonyan, Sov. J. Quantum Electron. 19, 1402 (1989).
[CrossRef]

Sokolov, A. V.

Spence, D. J.

Stingl, A.

N. Anscombe and A. Stingl, Nat. Photonics 4, 158 (2010).
[CrossRef]

Straka, P.

P. Straka, J. W. Nicholson, and W. Rudolph, Opt. Commun. 178, 175 (2000).
[CrossRef]

Strohaber, J.

Sun, J.

D. T. Reid, J. Sun, T. P. Lamour, and T. I. Ferrerio, Laser Phys. Lett. 8, 8 (2011).
[CrossRef]

Taylor, J. R.

Tikhomirov, S. A.

O. V. Buganov, A. S. Grabtchikov, Y. I. Malakhov, Y. M. Popov, V. A. Orlovich, and S. A. Tikhomirov, Laser Phys. Lett. 9, 786 (2012).

Wang, K.

Warrier, A. M.

Zhi, M.

Appl. Phys. Lett. (1)

M. J. Colles, Appl. Phys. Lett. 19, 23 (1971).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (2)

D. T. Reid, J. Sun, T. P. Lamour, and T. I. Ferrerio, Laser Phys. Lett. 8, 8 (2011).
[CrossRef]

O. V. Buganov, A. S. Grabtchikov, Y. I. Malakhov, Y. M. Popov, V. A. Orlovich, and S. A. Tikhomirov, Laser Phys. Lett. 9, 786 (2012).

Microsc. Res. Tech. (1)

J. M. Girkin and G. McConnell, Microsc. Res. Tech. 67, 8 (2005).
[CrossRef]

Nat. Photonics (1)

N. Anscombe and A. Stingl, Nat. Photonics 4, 158 (2010).
[CrossRef]

Opt. Commun. (1)

P. Straka, J. W. Nicholson, and W. Rudolph, Opt. Commun. 178, 175 (2000).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Prog. Quantum Electron. (1)

H. M. Pask, Prog. Quantum Electron. 27, 3 (2003).
[CrossRef]

Sov. J. Quantum Electron. (1)

G. G. Grigoryan and S. B. Sogomonyan, Sov. J. Quantum Electron. 19, 1402 (1989).
[CrossRef]

Other (2)

R. P. Mildren, in Optical Engineering of Diamond, R. P. Mildren and J. R. Rabeau, eds. (Wiley-VCH, 2013), Chap. 1, pp. 1–34.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Layout of experiment setup. L1: focusing lens; M1: ROC=200mm, high-reflection (HR) at 895 nm; M3: plane mirror, HR at 895 nm; M4: plane mirror, output coupler T=6.2% at 895 nm.

Fig. 2.
Fig. 2.

Average Stokes output power versus pump power, showing maximum output of 420 mW and a 33% slope efficiency. Inset: pump and Stokes spectra obtained at maximum output power; the line shows the wavelength of 895.4 nm generated by a diamond Raman shift (1332cm1) of the 800 nm central pump wavelength.

Fig. 3.
Fig. 3.

Comparison of experiment results and theoretical simulations. Row (a) experiment data; (b) simulation without SPM and XPM; (c) simulation with SPM and XPM. The intensity axis for each plot is an arbitrary linear scale.

Tables (1)

Tables Icon

Table 1. Simulation Parameters

Metrics