Abstract

We propose and demonstrate an ultrahigh-resolution optical spectrometry based on Brillouin dynamic gratings (BDGs). Taking advantage of creating a long grating in an optical fiber, an ultra-narrow bandwidth optical filter is realized by operating a BDG in a long single-mode fiber (SMF), and the optical spectrometry is performed by sweeping the center wavelength of the BDG-based filter through a swept-tuned laser. The BDG-based optical spectrometry features ultrahigh resolution, large wavelength coverage, and a simple direction-detection scheme. In the experiment, a 4 fm (0.5 MHz) spectral resolution is achieved by operating a BDG in a 400 m SMF, and the wavelength coverage can be readily extended to C+L bands with a commercial tunable laser.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Del Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Nat. Photonics 3, 529 (2009).
    [CrossRef]
  2. F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newburg, Nat. Photonics 4, 853 (2010).
    [CrossRef]
  3. D. M. Baney, B. Szafraniec, and A. Motamedi, IEEE Photon. Technol. Lett. 14, 355 (2002).
    [CrossRef]
  4. J. M. Subias Domingo, J. Pelayo, and F. Villuendas, IEEE Photon. Technol. Lett. 17, 855 (2005).
    [CrossRef]
  5. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
    [CrossRef]
  6. E. Hugues-Salas, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, Y. Hong, C. Shu, and J. M. Tang, Opt. Express 19, 2979 (2011).
    [CrossRef]
  7. C. Heras, J. Subías, J. Pelayo, F. Villuendas, and F. López, Opt. Express 16, 10658 (2008).
    [CrossRef]
  8. P. Sevillano, J. Subías, C. Heras, J. Pelayo, and F. Villuendas, Opt. Express 18, 15201 (2010).
    [CrossRef]
  9. R. Hui and M. O’Sullivan, Fiber Optic Measurement Techniques (Elsevier, 2009).
  10. E. P. Ippen and R. H. Stolen, Appl. Phys. Lett. 21, 539 (1972).
    [CrossRef]
  11. K. Y. Song, W. Zou, Z. He, and K. Hotate, Opt. Lett. 33, 926 (2008).
    [CrossRef]
  12. M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thevenaz, Sci. Rep. 3, 1594 (2013).
    [CrossRef]
  13. K. Y. Song, S. Chin, N. Primerov, and L. Thevenaz, J. Lightwave Technol. 28, 2062 (2010).
    [CrossRef]
  14. W. Zou, Z. He, and K. Hotate, Opt. Express 17, 1248 (2009).
    [CrossRef]
  15. Y. Dong, X. Bao, and L. Chen, Opt. Lett. 34, 2590 (2009).
    [CrossRef]
  16. J. Sancho, N. Primerov, S. Chin, Y. Antman, A. Zadok, S. Sales, and L. Thévenaz, Opt. Express 20, 6157 (2012).
    [CrossRef]
  17. Z. Zhu, D. J. Gauthier, and R. W. Boyd, Science 318, 1748 (2007).
    [CrossRef]
  18. Y. Dong, L. Chen, and X. Bao, Opt. Lett. 35, 193 (2010).
    [CrossRef]
  19. Y. Dong, L. Chen, and X. Bao, Opt. Express 18, 18960 (2010).
    [CrossRef]
  20. K. Y. Song and H. J. Yoon, Opt. Lett. 35, 2958 (2010).
    [CrossRef]
  21. K. Y. Song, Opt. Lett. 36, 4686 (2011).
    [CrossRef]
  22. T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
    [CrossRef]
  23. K. Y. Song, Opt. Lett. 37, 2229 (2012).
    [CrossRef]
  24. S. Xie, L. Chen, and X. Bao, Appl. Opt. 51, 4359 (2012).
    [CrossRef]

2013 (1)

M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thevenaz, Sci. Rep. 3, 1594 (2013).
[CrossRef]

2012 (3)

2011 (2)

2010 (6)

2009 (3)

W. Zou, Z. He, and K. Hotate, Opt. Express 17, 1248 (2009).
[CrossRef]

Y. Dong, X. Bao, and L. Chen, Opt. Lett. 34, 2590 (2009).
[CrossRef]

P. Del Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Nat. Photonics 3, 529 (2009).
[CrossRef]

2008 (2)

2007 (2)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef]

Z. Zhu, D. J. Gauthier, and R. W. Boyd, Science 318, 1748 (2007).
[CrossRef]

2005 (1)

J. M. Subias Domingo, J. Pelayo, and F. Villuendas, IEEE Photon. Technol. Lett. 17, 855 (2005).
[CrossRef]

2002 (1)

D. M. Baney, B. Szafraniec, and A. Motamedi, IEEE Photon. Technol. Lett. 14, 355 (2002).
[CrossRef]

1997 (1)

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

1972 (1)

E. P. Ippen and R. H. Stolen, Appl. Phys. Lett. 21, 539 (1972).
[CrossRef]

Antman, Y.

Arcizet, O.

P. Del Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Nat. Photonics 3, 529 (2009).
[CrossRef]

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef]

Baney, D. M.

D. M. Baney, B. Szafraniec, and A. Motamedi, IEEE Photon. Technol. Lett. 14, 355 (2002).
[CrossRef]

Bao, X.

Baumann, E.

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newburg, Nat. Photonics 4, 853 (2010).
[CrossRef]

Boyd, R. W.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, Science 318, 1748 (2007).
[CrossRef]

Chen, L.

Chin, S.

Coddington, I.

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newburg, Nat. Photonics 4, 853 (2010).
[CrossRef]

Del Haye, P.

P. Del Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Nat. Photonics 3, 529 (2009).
[CrossRef]

Dong, Y.

Erdogan, T.

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef]

Gauthier, D. J.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, Science 318, 1748 (2007).
[CrossRef]

Giddings, R. P.

Giorgetta, F. R.

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newburg, Nat. Photonics 4, 853 (2010).
[CrossRef]

Gorodetsky, M. L.

P. Del Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Nat. Photonics 3, 529 (2009).
[CrossRef]

He, Z.

Heras, C.

Holzwarth, R.

P. Del Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Nat. Photonics 3, 529 (2009).
[CrossRef]

Hong, Y.

Hotate, K.

Hugues-Salas, E.

Hui, R.

R. Hui and M. O’Sullivan, Fiber Optic Measurement Techniques (Elsevier, 2009).

Ippen, E. P.

E. P. Ippen and R. H. Stolen, Appl. Phys. Lett. 21, 539 (1972).
[CrossRef]

Jin, X. Q.

Kippenberg, T. J.

P. Del Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Nat. Photonics 3, 529 (2009).
[CrossRef]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef]

López, F.

Motamedi, A.

D. M. Baney, B. Szafraniec, and A. Motamedi, IEEE Photon. Technol. Lett. 14, 355 (2002).
[CrossRef]

Newburg, N. R.

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newburg, Nat. Photonics 4, 853 (2010).
[CrossRef]

O’Sullivan, M.

R. Hui and M. O’Sullivan, Fiber Optic Measurement Techniques (Elsevier, 2009).

Pelayo, J.

Primerov, N.

Sales, S.

Sancho, J.

Santagiustina, M.

M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thevenaz, Sci. Rep. 3, 1594 (2013).
[CrossRef]

Sevillano, P.

Shu, C.

Song, K. Y.

Stolen, R. H.

E. P. Ippen and R. H. Stolen, Appl. Phys. Lett. 21, 539 (1972).
[CrossRef]

Subías, J.

Subias Domingo, J. M.

J. M. Subias Domingo, J. Pelayo, and F. Villuendas, IEEE Photon. Technol. Lett. 17, 855 (2005).
[CrossRef]

Swann, W. C.

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newburg, Nat. Photonics 4, 853 (2010).
[CrossRef]

Szafraniec, B.

D. M. Baney, B. Szafraniec, and A. Motamedi, IEEE Photon. Technol. Lett. 14, 355 (2002).
[CrossRef]

Tang, J. M.

Thevenaz, L.

M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thevenaz, Sci. Rep. 3, 1594 (2013).
[CrossRef]

K. Y. Song, S. Chin, N. Primerov, and L. Thevenaz, J. Lightwave Technol. 28, 2062 (2010).
[CrossRef]

Thévenaz, L.

Ursini, L.

M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thevenaz, Sci. Rep. 3, 1594 (2013).
[CrossRef]

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef]

Villuendas, F.

Wei, J. L.

Xie, S.

Yoon, H. J.

Zadok, A.

Zheng, X.

Zhu, Z.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, Science 318, 1748 (2007).
[CrossRef]

Zou, W.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. P. Ippen and R. H. Stolen, Appl. Phys. Lett. 21, 539 (1972).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

D. M. Baney, B. Szafraniec, and A. Motamedi, IEEE Photon. Technol. Lett. 14, 355 (2002).
[CrossRef]

J. M. Subias Domingo, J. Pelayo, and F. Villuendas, IEEE Photon. Technol. Lett. 17, 855 (2005).
[CrossRef]

J. Lightwave Technol. (2)

Nat. Photonics (2)

P. Del Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Nat. Photonics 3, 529 (2009).
[CrossRef]

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newburg, Nat. Photonics 4, 853 (2010).
[CrossRef]

Opt. Express (6)

Opt. Lett. (6)

Sci. Rep. (1)

M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thevenaz, Sci. Rep. 3, 1594 (2013).
[CrossRef]

Science (2)

Z. Zhu, D. J. Gauthier, and R. W. Boyd, Science 318, 1748 (2007).
[CrossRef]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef]

Other (1)

R. Hui and M. O’Sullivan, Fiber Optic Measurement Techniques (Elsevier, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup. SSBM, single-sideband modulator; PM, phase modulation; PBS, polarization beam splitter; PD, photodiode; DAQ, data-acquisition card. Dashed frame: a multipeak spectrum with an interval of a few MHz is created to verify the capability of the spectral resolution of the BDG-OSA.

Fig. 2.
Fig. 2.

Red dots show the measured FWHM bandwidth of BDG versus to the fiber length; blue curve shows the theory of a uniform weak grating.

Fig. 3.
Fig. 3.

Measured spectra with SMF segments of (a) 100 m, (b) 200 m, (c) 400 m, and (d) 600 m. The frequency interval of the multipeak spectrum is 1 MHz.

Fig. 4.
Fig. 4.

Typical reflection spectrum of a BDG in a 400 m SMF segment.

Fig. 5.
Fig. 5.

Measured Brillouin signals for maximum and minimum SOP matching between the pump and probe waves in (a) 400 m SMF and (b) 600 m SMF.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔvBDG=0.443c/nL,

Metrics