Abstract

We propose an efficient, robust, and broadband nonlinear optical frequency conversion technique, which uses segmented crystals constructed in analogy with the composite pulses in nuclear magnetic resonance and quantum optics. The composite crystals are made of several macroscopic segments of nonlinear susceptibilities of opposite signs and specific thicknesses, which are determined from the condition to maximize the conversion efficiency with respect to variations in the experimental parameters. These crystals deliver broadband operation for significantly lower pump intensities than single bulk crystals. We demonstrate this technique by numerical simulation of sum-frequency generation in MgO:LiNbO3 crystal.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2007).
  2. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
    [CrossRef]
  3. A. Arie and N. Voloch, Laser Photon. Rev. 4, 355 (2010).
    [CrossRef]
  4. P. Loza-Alvarez, M. Ebrahimzadeh, W. Sibbett, D. T. Reid, D. Artigas, and M. Missey, J. Opt. Soc. Am. B 18, 1212 (2001).
    [CrossRef]
  5. A. M. Schober, G. Imeshev, and M. M. Fejer, Opt. Lett. 27, 1129 (2002).
    [CrossRef]
  6. K. A. Tillman, D. T. Reid, D. Artigas, J. Hellström, V. Pasiskevicius, and F. Laurell, Opt. Lett. 28, 543 (2003).
    [CrossRef]
  7. M. Robles-Agudo and R. S. Cudney, Appl. Phys. B 103, 99 (2011).
    [CrossRef]
  8. M. H. Levitt and R. Freeman, J. Magn. Reson. 33, 473 (1979).
    [CrossRef]
  9. M. H. Levitt, Prog. Nucl. Magn. Reson. Spectrosc. 18, 61 (1986).
    [CrossRef]
  10. F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, Nature 422, 408 (2003).
    [CrossRef]
  11. B. T. Torosov, S. Guerin, and N. V. Vitanov, Phys. Rev. Lett. 106, 233001 (2011).
    [CrossRef]
  12. A. J. Shaka, Chem. Phys. Lett. 120, 201 (1985).
    [CrossRef]
  13. A. J. Shaka and A. Pines, J. Magn. Reson. 71, 495 (1987).
    [CrossRef]
  14. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1987).
  15. H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, Phys. Rev. A 78, 063821 (2008).
    [CrossRef]
  16. H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, Appl. Phys. B 105, 697 (2011).
    [CrossRef]
  17. H. Suchowski, G. Porat, and A. Arie, Laser Photonics Rev. 8, 333 (2014).
  18. D. N. Nikogosyan, Nonlinar Optical Crystals (Springer, 2005).
  19. G. T. Genov, A. A. Rangelov, and N. V. Vitanov, “Efficient broadband frequency generation in composite crystals,” J. Opt. (to be published)
  20. G. D. Giuseppe, M. Atatüre, M. D. Shaw, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, Phys. Rev. A 66, 013801 (2002).
    [CrossRef]
  21. A. B. U’Ren, R. K. Erdmann, M. de la Cruz-Gutierrez, and I. A. Walmsley, Phys. Rev. Lett. 97, 223602 (2006).
    [CrossRef]

2014 (1)

H. Suchowski, G. Porat, and A. Arie, Laser Photonics Rev. 8, 333 (2014).

2011 (3)

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, Appl. Phys. B 105, 697 (2011).
[CrossRef]

M. Robles-Agudo and R. S. Cudney, Appl. Phys. B 103, 99 (2011).
[CrossRef]

B. T. Torosov, S. Guerin, and N. V. Vitanov, Phys. Rev. Lett. 106, 233001 (2011).
[CrossRef]

2010 (1)

A. Arie and N. Voloch, Laser Photon. Rev. 4, 355 (2010).
[CrossRef]

2008 (1)

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, Phys. Rev. A 78, 063821 (2008).
[CrossRef]

2006 (1)

A. B. U’Ren, R. K. Erdmann, M. de la Cruz-Gutierrez, and I. A. Walmsley, Phys. Rev. Lett. 97, 223602 (2006).
[CrossRef]

2003 (2)

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, Nature 422, 408 (2003).
[CrossRef]

K. A. Tillman, D. T. Reid, D. Artigas, J. Hellström, V. Pasiskevicius, and F. Laurell, Opt. Lett. 28, 543 (2003).
[CrossRef]

2002 (2)

G. D. Giuseppe, M. Atatüre, M. D. Shaw, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, Phys. Rev. A 66, 013801 (2002).
[CrossRef]

A. M. Schober, G. Imeshev, and M. M. Fejer, Opt. Lett. 27, 1129 (2002).
[CrossRef]

2001 (1)

1987 (1)

A. J. Shaka and A. Pines, J. Magn. Reson. 71, 495 (1987).
[CrossRef]

1986 (1)

M. H. Levitt, Prog. Nucl. Magn. Reson. Spectrosc. 18, 61 (1986).
[CrossRef]

1985 (1)

A. J. Shaka, Chem. Phys. Lett. 120, 201 (1985).
[CrossRef]

1979 (1)

M. H. Levitt and R. Freeman, J. Magn. Reson. 33, 473 (1979).
[CrossRef]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Allen, L.

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1987).

Arie, A.

H. Suchowski, G. Porat, and A. Arie, Laser Photonics Rev. 8, 333 (2014).

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, Appl. Phys. B 105, 697 (2011).
[CrossRef]

A. Arie and N. Voloch, Laser Photon. Rev. 4, 355 (2010).
[CrossRef]

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, Phys. Rev. A 78, 063821 (2008).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Artigas, D.

Atatüre, M.

G. D. Giuseppe, M. Atatüre, M. D. Shaw, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, Phys. Rev. A 66, 013801 (2002).
[CrossRef]

Becher, C.

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, Nature 422, 408 (2003).
[CrossRef]

Blatt, R.

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, Nature 422, 408 (2003).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2007).

Bruner, B. D.

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, Appl. Phys. B 105, 697 (2011).
[CrossRef]

Cudney, R. S.

M. Robles-Agudo and R. S. Cudney, Appl. Phys. B 103, 99 (2011).
[CrossRef]

de la Cruz-Gutierrez, M.

A. B. U’Ren, R. K. Erdmann, M. de la Cruz-Gutierrez, and I. A. Walmsley, Phys. Rev. Lett. 97, 223602 (2006).
[CrossRef]

Deuschle, T.

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, Nature 422, 408 (2003).
[CrossRef]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Eberly, J. H.

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1987).

Ebrahimzadeh, M.

Erdmann, R. K.

A. B. U’Ren, R. K. Erdmann, M. de la Cruz-Gutierrez, and I. A. Walmsley, Phys. Rev. Lett. 97, 223602 (2006).
[CrossRef]

Eschner, J.

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, Nature 422, 408 (2003).
[CrossRef]

Fejer, M. M.

Freeman, R.

M. H. Levitt and R. Freeman, J. Magn. Reson. 33, 473 (1979).
[CrossRef]

Ganany-Padowicz, A.

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, Appl. Phys. B 105, 697 (2011).
[CrossRef]

Genov, G. T.

G. T. Genov, A. A. Rangelov, and N. V. Vitanov, “Efficient broadband frequency generation in composite crystals,” J. Opt. (to be published)

Giuseppe, G. D.

G. D. Giuseppe, M. Atatüre, M. D. Shaw, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, Phys. Rev. A 66, 013801 (2002).
[CrossRef]

Guerin, S.

B. T. Torosov, S. Guerin, and N. V. Vitanov, Phys. Rev. Lett. 106, 233001 (2011).
[CrossRef]

Gulde, S.

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, Nature 422, 408 (2003).
[CrossRef]

Häffner, H.

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, Nature 422, 408 (2003).
[CrossRef]

Hellström, J.

Imeshev, G.

Juwiler, I.

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, Appl. Phys. B 105, 697 (2011).
[CrossRef]

Lancaster, G. P. T.

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, Nature 422, 408 (2003).
[CrossRef]

Laurell, F.

Levitt, M. H.

M. H. Levitt, Prog. Nucl. Magn. Reson. Spectrosc. 18, 61 (1986).
[CrossRef]

M. H. Levitt and R. Freeman, J. Magn. Reson. 33, 473 (1979).
[CrossRef]

Loza-Alvarez, P.

Missey, M.

Nikogosyan, D. N.

D. N. Nikogosyan, Nonlinar Optical Crystals (Springer, 2005).

Oron, D.

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, Phys. Rev. A 78, 063821 (2008).
[CrossRef]

Pasiskevicius, V.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Pines, A.

A. J. Shaka and A. Pines, J. Magn. Reson. 71, 495 (1987).
[CrossRef]

Porat, G.

H. Suchowski, G. Porat, and A. Arie, Laser Photonics Rev. 8, 333 (2014).

Rangelov, A. A.

G. T. Genov, A. A. Rangelov, and N. V. Vitanov, “Efficient broadband frequency generation in composite crystals,” J. Opt. (to be published)

Reid, D. T.

Riebe, M.

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, Nature 422, 408 (2003).
[CrossRef]

Robles-Agudo, M.

M. Robles-Agudo and R. S. Cudney, Appl. Phys. B 103, 99 (2011).
[CrossRef]

Roos, C. F.

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, Nature 422, 408 (2003).
[CrossRef]

Saleh, B. E. A.

G. D. Giuseppe, M. Atatüre, M. D. Shaw, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, Phys. Rev. A 66, 013801 (2002).
[CrossRef]

Schmidt-Kaler, F.

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, Nature 422, 408 (2003).
[CrossRef]

Schober, A. M.

Sergienko, A. V.

G. D. Giuseppe, M. Atatüre, M. D. Shaw, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, Phys. Rev. A 66, 013801 (2002).
[CrossRef]

Shaka, A. J.

A. J. Shaka and A. Pines, J. Magn. Reson. 71, 495 (1987).
[CrossRef]

A. J. Shaka, Chem. Phys. Lett. 120, 201 (1985).
[CrossRef]

Shaw, M. D.

G. D. Giuseppe, M. Atatüre, M. D. Shaw, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, Phys. Rev. A 66, 013801 (2002).
[CrossRef]

Sibbett, W.

Silberberg, Y.

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, Appl. Phys. B 105, 697 (2011).
[CrossRef]

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, Phys. Rev. A 78, 063821 (2008).
[CrossRef]

Suchowski, H.

H. Suchowski, G. Porat, and A. Arie, Laser Photonics Rev. 8, 333 (2014).

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, Appl. Phys. B 105, 697 (2011).
[CrossRef]

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, Phys. Rev. A 78, 063821 (2008).
[CrossRef]

Teich, M. C.

G. D. Giuseppe, M. Atatüre, M. D. Shaw, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, Phys. Rev. A 66, 013801 (2002).
[CrossRef]

Tillman, K. A.

Torosov, B. T.

B. T. Torosov, S. Guerin, and N. V. Vitanov, Phys. Rev. Lett. 106, 233001 (2011).
[CrossRef]

U’Ren, A. B.

A. B. U’Ren, R. K. Erdmann, M. de la Cruz-Gutierrez, and I. A. Walmsley, Phys. Rev. Lett. 97, 223602 (2006).
[CrossRef]

Vitanov, N. V.

B. T. Torosov, S. Guerin, and N. V. Vitanov, Phys. Rev. Lett. 106, 233001 (2011).
[CrossRef]

G. T. Genov, A. A. Rangelov, and N. V. Vitanov, “Efficient broadband frequency generation in composite crystals,” J. Opt. (to be published)

Voloch, N.

A. Arie and N. Voloch, Laser Photon. Rev. 4, 355 (2010).
[CrossRef]

Walmsley, I. A.

A. B. U’Ren, R. K. Erdmann, M. de la Cruz-Gutierrez, and I. A. Walmsley, Phys. Rev. Lett. 97, 223602 (2006).
[CrossRef]

Appl. Phys. B (2)

M. Robles-Agudo and R. S. Cudney, Appl. Phys. B 103, 99 (2011).
[CrossRef]

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, Appl. Phys. B 105, 697 (2011).
[CrossRef]

Chem. Phys. Lett. (1)

A. J. Shaka, Chem. Phys. Lett. 120, 201 (1985).
[CrossRef]

J. Magn. Reson. (2)

A. J. Shaka and A. Pines, J. Magn. Reson. 71, 495 (1987).
[CrossRef]

M. H. Levitt and R. Freeman, J. Magn. Reson. 33, 473 (1979).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

A. Arie and N. Voloch, Laser Photon. Rev. 4, 355 (2010).
[CrossRef]

Laser Photonics Rev. (1)

H. Suchowski, G. Porat, and A. Arie, Laser Photonics Rev. 8, 333 (2014).

Nature (1)

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, Nature 422, 408 (2003).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Phys. Rev. A (2)

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, Phys. Rev. A 78, 063821 (2008).
[CrossRef]

G. D. Giuseppe, M. Atatüre, M. D. Shaw, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, Phys. Rev. A 66, 013801 (2002).
[CrossRef]

Phys. Rev. Lett. (2)

A. B. U’Ren, R. K. Erdmann, M. de la Cruz-Gutierrez, and I. A. Walmsley, Phys. Rev. Lett. 97, 223602 (2006).
[CrossRef]

B. T. Torosov, S. Guerin, and N. V. Vitanov, Phys. Rev. Lett. 106, 233001 (2011).
[CrossRef]

Prog. Nucl. Magn. Reson. Spectrosc. (1)

M. H. Levitt, Prog. Nucl. Magn. Reson. Spectrosc. 18, 61 (1986).
[CrossRef]

Other (4)

D. N. Nikogosyan, Nonlinar Optical Crystals (Springer, 2005).

G. T. Genov, A. A. Rangelov, and N. V. Vitanov, “Efficient broadband frequency generation in composite crystals,” J. Opt. (to be published)

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2007).

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Numerically simulated SFG efficiency from Eqs. (1) versus the coupling Ω˜ and the phase mismatch Δk. Frames (a) and (b) are for a single crystal (N=1), while frames (c) and (d) are for a composite crystal of N=4 domains and frames (e) and (f) are for a composite crystal of N=6 domains, with the thicknesses listed in Table 1. The left columns (a), (c), and (e) are for the undepleted-pump regime (|A1(zi)|=10|A2(zi)|), while the right columns (b), (d), and (f) are for the depleted-pump regime (|A1(zi)|=|A2(zi)|). The inner curves mark the 90% efficiency level, and the outer curves are for the 50% level. The reciprocal of the total crystal length L is used as a unit for Ω˜ and Δk.

Fig. 2.
Fig. 2.

Efficiency of SFG versus the pump intensity and the signal wavelength for different composite crystals from Table 1. The contour curves show the 50% efficiency level. Frames (a) and (b), a bulk MgO:LiNbO3 crystal (L=0.5mm, N=1). Frames (c) and (d), 2 mm long MgO:LiNbO3 composite crystal with N=6 segments. Frames (e) and (f), 3.5 mm long MgO:LiNbO3 composite crystal with N=15 segments. The numerical simulations use Eqs. (1) and are made for undepleted pump [left frames, (a), (c), and (e)] and depleted pump [right frames, (b), (d), and (f)]. In the depleted case the input photon intensities of the pump and the signal are chosen to be equal. We have included an up to 10% random error in the thickness of each domain compared to the values in Table 1.

Tables (2)

Tables Icon

Table 1. Domain Lengths (in Units of Total Crystal Length L) for Composite Crystals Composed of N Domains with Alternating Sign of χ(2), which Optimize the Bandwidth and the Robustness of the Frequency Conversion Processa

Tables Icon

Table 2. Pairs (L;Ip) of the Total Crystal Length L (in mm) and the Pump Intensity Ip (in GW/cm2) Required to Achieve a Predefined Value of the Spectral Acceptance Bandwidth Δλ1/2 (FWHM) for Different Composite Crystals from Table 1

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

izA1=Ω˜A2*A3exp[iΔkz],
izA2=Ω˜A1*A3exp[iΔkz],
izA3=Ω˜A1A2exp[iΔkz],
izB(z)=HB(z),
H=12[ΔkΩΩΔk]
U=u(lN)u(l2)u(l1),
U(Ω,Δk)=U(Ω0,0)+UΩ(Ω0,0)(ΩΩ0)+UΔk(Ω0,0)Δk+12UΩ,Ω(Ω0,0)(ΩΩ0)2+UΩ,Δk(Ω0,0)(ΩΩ0)Δk+12UΔk,Δk(Ω0,0)Δk2+
750nm(o)+1500nm(o)500nm(e).

Metrics