Abstract

We present a double-pass scheme for high-efficiency, high-power, second-harmonic generation (SHG) in a single MgO-doped periodically poled stoichiometric lithium tantalate (MgO:PPSLT) crystal. The device is pumped by a single-frequency, continuous-wave fiber amplifier laser system at a wavelength of 1091 nm. For the double-pass scheme, a conversion efficiency of 60% and a harmonic power of 12.8 W at a wavelength of 545.5 nm with a high beam quality of (M2<1.2) is achieved. Compared to single-pass SHG, a double-pass enhancement factor of more than two is observed at the highest fundamental pump power.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Chaitanya Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, Opt. Express 17, 13711 (2009).
    [CrossRef]
  2. S. Kurimura, N. E. Yu, Y. Nomura, M. Nakamura, K. Kitamura, and T. Sumiyoshi, in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics (Optical Society of America, 2005), paper 92.
  3. K. Kitamura, Y. Furukawa, S. Takekawa, M. Nakamura, A. Alexandrovski, and M. M. Fejer, in Summaries of Papers Presented at the Conference on Lasers and Electro-Optics 2001, Technical Digest (2001), pp. 138–139.
  4. M. Stappel, R. Steinborn, D. Kolbe, and J. Walz, Laser Phys. 23, 075103 (2013).
    [CrossRef]
  5. S. Sinha, D. S. Hum, K. E. Urbanek, Y.-W. Lee, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, J. Lightwave Technol. 26, 3866 (2008).
    [CrossRef]
  6. G. Samanta, S. Kumar, K. Devi, and M. Ebrahim-Zadeh, Opt. Lett. 35, 3513 (2010).
    [CrossRef]
  7. G. Imeshev, M. Proctor, and M. Fejer, Opt. Lett. 23, 165 (1998).
    [CrossRef]
  8. S. Spiekermann, F. Laurell, V. Pasiskevicius, H. Karlsson, and I. Freitag, Appl. Phys. B 79, 211 (2004).
    [CrossRef]
  9. T. Meier, B. Willke, and K. Danzmann, Opt. Lett. 35, 3742 (2010).
    [CrossRef]
  10. M. Stappel, D. Kolbe, and J. Walz, “Frequenzvervielfachende Kristallanordnung mit hohem Wirkungsgrad,” German patent pending10 2013 107 196.1 (July9, 2013).
  11. Molecular Technology (MolTech) GmbH, http://www.mt-berlin.com .
  12. G. D. Boyd and D. A. Kleinman, Appl. Opt. 39, 3597 (1968).
  13. J. M. Yarborough, J. Falk, and C. B. Hitz, Appl. Phys. Lett. 18, 70 (1971).
    [CrossRef]
  14. D. S. Hum and M. M. Fejer, C. R. Phys. 8, 180 (2007).
  15. V. A. Akulov, S. A. Babin, S. I. Kablukov, and K. S. Raspopin, Laser Phys. 21, 935 (2011).
    [CrossRef]
  16. R. W. Boyd, Nonlinear Optics (Academic, 2008).

2013 (1)

M. Stappel, R. Steinborn, D. Kolbe, and J. Walz, Laser Phys. 23, 075103 (2013).
[CrossRef]

2011 (1)

V. A. Akulov, S. A. Babin, S. I. Kablukov, and K. S. Raspopin, Laser Phys. 21, 935 (2011).
[CrossRef]

2010 (2)

2009 (1)

2008 (1)

2007 (1)

D. S. Hum and M. M. Fejer, C. R. Phys. 8, 180 (2007).

2004 (1)

S. Spiekermann, F. Laurell, V. Pasiskevicius, H. Karlsson, and I. Freitag, Appl. Phys. B 79, 211 (2004).
[CrossRef]

1998 (1)

1971 (1)

J. M. Yarborough, J. Falk, and C. B. Hitz, Appl. Phys. Lett. 18, 70 (1971).
[CrossRef]

1968 (1)

G. D. Boyd and D. A. Kleinman, Appl. Opt. 39, 3597 (1968).

Akulov, V. A.

V. A. Akulov, S. A. Babin, S. I. Kablukov, and K. S. Raspopin, Laser Phys. 21, 935 (2011).
[CrossRef]

Alexandrovski, A.

K. Kitamura, Y. Furukawa, S. Takekawa, M. Nakamura, A. Alexandrovski, and M. M. Fejer, in Summaries of Papers Presented at the Conference on Lasers and Electro-Optics 2001, Technical Digest (2001), pp. 138–139.

Babin, S. A.

V. A. Akulov, S. A. Babin, S. I. Kablukov, and K. S. Raspopin, Laser Phys. 21, 935 (2011).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, Appl. Opt. 39, 3597 (1968).

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2008).

Byer, R. L.

Chaitanya Kumar, S.

Danzmann, K.

Devi, K.

Digonnet, M. J. F.

Ebrahim-Zadeh, M.

Falk, J.

J. M. Yarborough, J. Falk, and C. B. Hitz, Appl. Phys. Lett. 18, 70 (1971).
[CrossRef]

Fejer, M.

Fejer, M. M.

S. Sinha, D. S. Hum, K. E. Urbanek, Y.-W. Lee, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, J. Lightwave Technol. 26, 3866 (2008).
[CrossRef]

D. S. Hum and M. M. Fejer, C. R. Phys. 8, 180 (2007).

K. Kitamura, Y. Furukawa, S. Takekawa, M. Nakamura, A. Alexandrovski, and M. M. Fejer, in Summaries of Papers Presented at the Conference on Lasers and Electro-Optics 2001, Technical Digest (2001), pp. 138–139.

Freitag, I.

S. Spiekermann, F. Laurell, V. Pasiskevicius, H. Karlsson, and I. Freitag, Appl. Phys. B 79, 211 (2004).
[CrossRef]

Furukawa, Y.

K. Kitamura, Y. Furukawa, S. Takekawa, M. Nakamura, A. Alexandrovski, and M. M. Fejer, in Summaries of Papers Presented at the Conference on Lasers and Electro-Optics 2001, Technical Digest (2001), pp. 138–139.

Hitz, C. B.

J. M. Yarborough, J. Falk, and C. B. Hitz, Appl. Phys. Lett. 18, 70 (1971).
[CrossRef]

Hum, D. S.

Imeshev, G.

Kablukov, S. I.

V. A. Akulov, S. A. Babin, S. I. Kablukov, and K. S. Raspopin, Laser Phys. 21, 935 (2011).
[CrossRef]

Karlsson, H.

S. Spiekermann, F. Laurell, V. Pasiskevicius, H. Karlsson, and I. Freitag, Appl. Phys. B 79, 211 (2004).
[CrossRef]

Kitamura, K.

S. Kurimura, N. E. Yu, Y. Nomura, M. Nakamura, K. Kitamura, and T. Sumiyoshi, in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics (Optical Society of America, 2005), paper 92.

K. Kitamura, Y. Furukawa, S. Takekawa, M. Nakamura, A. Alexandrovski, and M. M. Fejer, in Summaries of Papers Presented at the Conference on Lasers and Electro-Optics 2001, Technical Digest (2001), pp. 138–139.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, Appl. Opt. 39, 3597 (1968).

Kolbe, D.

M. Stappel, R. Steinborn, D. Kolbe, and J. Walz, Laser Phys. 23, 075103 (2013).
[CrossRef]

M. Stappel, D. Kolbe, and J. Walz, “Frequenzvervielfachende Kristallanordnung mit hohem Wirkungsgrad,” German patent pending10 2013 107 196.1 (July9, 2013).

Kumar, S.

Kurimura, S.

S. Kurimura, N. E. Yu, Y. Nomura, M. Nakamura, K. Kitamura, and T. Sumiyoshi, in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics (Optical Society of America, 2005), paper 92.

Laurell, F.

S. Spiekermann, F. Laurell, V. Pasiskevicius, H. Karlsson, and I. Freitag, Appl. Phys. B 79, 211 (2004).
[CrossRef]

Lee, Y.-W.

Meier, T.

Nakamura, M.

K. Kitamura, Y. Furukawa, S. Takekawa, M. Nakamura, A. Alexandrovski, and M. M. Fejer, in Summaries of Papers Presented at the Conference on Lasers and Electro-Optics 2001, Technical Digest (2001), pp. 138–139.

S. Kurimura, N. E. Yu, Y. Nomura, M. Nakamura, K. Kitamura, and T. Sumiyoshi, in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics (Optical Society of America, 2005), paper 92.

Nomura, Y.

S. Kurimura, N. E. Yu, Y. Nomura, M. Nakamura, K. Kitamura, and T. Sumiyoshi, in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics (Optical Society of America, 2005), paper 92.

Pasiskevicius, V.

S. Spiekermann, F. Laurell, V. Pasiskevicius, H. Karlsson, and I. Freitag, Appl. Phys. B 79, 211 (2004).
[CrossRef]

Proctor, M.

Raspopin, K. S.

V. A. Akulov, S. A. Babin, S. I. Kablukov, and K. S. Raspopin, Laser Phys. 21, 935 (2011).
[CrossRef]

Samanta, G.

Samanta, G. K.

Sinha, S.

Spiekermann, S.

S. Spiekermann, F. Laurell, V. Pasiskevicius, H. Karlsson, and I. Freitag, Appl. Phys. B 79, 211 (2004).
[CrossRef]

Stappel, M.

M. Stappel, R. Steinborn, D. Kolbe, and J. Walz, Laser Phys. 23, 075103 (2013).
[CrossRef]

M. Stappel, D. Kolbe, and J. Walz, “Frequenzvervielfachende Kristallanordnung mit hohem Wirkungsgrad,” German patent pending10 2013 107 196.1 (July9, 2013).

Steinborn, R.

M. Stappel, R. Steinborn, D. Kolbe, and J. Walz, Laser Phys. 23, 075103 (2013).
[CrossRef]

Sumiyoshi, T.

S. Kurimura, N. E. Yu, Y. Nomura, M. Nakamura, K. Kitamura, and T. Sumiyoshi, in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics (Optical Society of America, 2005), paper 92.

Takekawa, S.

K. Kitamura, Y. Furukawa, S. Takekawa, M. Nakamura, A. Alexandrovski, and M. M. Fejer, in Summaries of Papers Presented at the Conference on Lasers and Electro-Optics 2001, Technical Digest (2001), pp. 138–139.

Urbanek, K. E.

Walz, J.

M. Stappel, R. Steinborn, D. Kolbe, and J. Walz, Laser Phys. 23, 075103 (2013).
[CrossRef]

M. Stappel, D. Kolbe, and J. Walz, “Frequenzvervielfachende Kristallanordnung mit hohem Wirkungsgrad,” German patent pending10 2013 107 196.1 (July9, 2013).

Willke, B.

Yarborough, J. M.

J. M. Yarborough, J. Falk, and C. B. Hitz, Appl. Phys. Lett. 18, 70 (1971).
[CrossRef]

Yu, N. E.

S. Kurimura, N. E. Yu, Y. Nomura, M. Nakamura, K. Kitamura, and T. Sumiyoshi, in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics (Optical Society of America, 2005), paper 92.

Appl. Opt. (1)

G. D. Boyd and D. A. Kleinman, Appl. Opt. 39, 3597 (1968).

Appl. Phys. B (1)

S. Spiekermann, F. Laurell, V. Pasiskevicius, H. Karlsson, and I. Freitag, Appl. Phys. B 79, 211 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

J. M. Yarborough, J. Falk, and C. B. Hitz, Appl. Phys. Lett. 18, 70 (1971).
[CrossRef]

C. R. Phys. (1)

D. S. Hum and M. M. Fejer, C. R. Phys. 8, 180 (2007).

J. Lightwave Technol. (1)

Laser Phys. (2)

M. Stappel, R. Steinborn, D. Kolbe, and J. Walz, Laser Phys. 23, 075103 (2013).
[CrossRef]

V. A. Akulov, S. A. Babin, S. I. Kablukov, and K. S. Raspopin, Laser Phys. 21, 935 (2011).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Other (5)

R. W. Boyd, Nonlinear Optics (Academic, 2008).

M. Stappel, D. Kolbe, and J. Walz, “Frequenzvervielfachende Kristallanordnung mit hohem Wirkungsgrad,” German patent pending10 2013 107 196.1 (July9, 2013).

Molecular Technology (MolTech) GmbH, http://www.mt-berlin.com .

S. Kurimura, N. E. Yu, Y. Nomura, M. Nakamura, K. Kitamura, and T. Sumiyoshi, in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics (Optical Society of America, 2005), paper 92.

K. Kitamura, Y. Furukawa, S. Takekawa, M. Nakamura, A. Alexandrovski, and M. M. Fejer, in Summaries of Papers Presented at the Conference on Lasers and Electro-Optics 2001, Technical Digest (2001), pp. 138–139.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Setup of double-pass second-harmonic generation in MgO:PPSLT. FI, Faraday isolator; λ/2, half-wave plate; PBS, polarizing beam splitter; L, lens; GP, glass plate; M1, D-shaped mirror; M2, concave mirror; M3, dichroic mirror; β, angle between first and second pass; A, field amplitude; P, crystal internal power. See text for further details.

Fig. 2.
Fig. 2.

Single-pass (SP) and double-pass (DP) second-harmonic power as a function of fundamental power. The inset shows the SH power stability.

Fig. 3.
Fig. 3.

Single-pass second-harmonic efficiency ϵSP, double-pass second-harmonic efficiency ϵDP, and double-pass enhancement factor ϵDP/ϵSP as a function of fundamental power.

Fig. 4.
Fig. 4.

ϕπ (filled blue squares): temperature tuning curve phase matched for maximum second-harmonic (SH) output. ϕ0 (open red circles): temperature tuning curve with mismatched phase. Gray dashed line: Measured single-pass temperature tuning curve. SH powers are normalized to maximum output power. The solid lines are numerical calculations of the temperature tuning curves.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P2ω,SP=Pωb1γ=|A1|2,γ=16π2deff2lhε0cn1n2λ3Pω,
ADP=A1eiϕ+A2,
P2ω,DP=|ADP|2=Pω(b1+b2)2γ.
P2ω,SP/DP=Pωtanh2bSP/DPγ,

Metrics