Abstract

We present an integrated optical system for three-dimensional (3D) imaging of micrometer-sized samples, while immobilizing and manipulating the samples by means of an optical fiber trap. Optical traps allow us to apply and measure pico-Newton-sized forces, and perform detailed measurements of micrometer-sized dielectric systems in the field of biology. The integrated 3D system can be used as a major tool in the field of biophysics. The trap is built using a tapered optical fiber to enhance the effective numerical aperture of the fiber. The trapping system is mounted on a conventional microscope, in which the two eyepieces’ output ports are used as the paths of an off-axis self-referencing digital holographic microscopy (DHM) setup. The trap is calibrated using a high-speed camera, and trap stiffness is determined through the power spectrum method. The compact setup provides an elegant apparatus for temporally stable DHM for 3D imaging of optically controlled samples. Three-dimensional information and quantitative phase contrast images of the trapped samples are obtained by postprocessing the recorded digital holograms. Experiments were performed on lipids and red blood cells. Quantitative phase contrast images and temporal evolution of optical thickness of trapped samples are presented.

© 2014 Optical Society of America

Full Article  |  PDF Article
Related Articles
Time-domain optical coherence tomography with digital holographic microscopy

Pia Massatsch, Florian Charrière, Etienne Cuche, Pierre Marquet, and Christian D. Depeursinge
Appl. Opt. 44(10) 1806-1812 (2005)

Optical trapping of colloidal particles and cells by focused evanescent fields using conical lenses

Young-Zoon Yoon and Pietro Cicuta
Opt. Express 18(7) 7076-7084 (2010)

Effect of the size and shape of a red blood cell on elastic light scattering properties at the single-cell level

Matti Kinnunen, Antti Kauppila, Artashes Karmenyan, and Risto Myllylä
Biomed. Opt. Express 2(7) 1803-1814 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription